Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # ------------------------------ | |
| # Load Model & Tokenizer | |
| # ------------------------------ | |
| model_name = "kaitchup/Llama-3.2-3B-Instruct-educational-chatbot" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| device_map="auto" | |
| ) | |
| # ------------------------------ | |
| # Define Chat Function | |
| # ------------------------------ | |
| def chat_with_ai(user_input, history): | |
| history = history or [] | |
| messages = [f"User: {msg[0]}\nAI: {msg[1]}" for msg in history] | |
| messages.append(f"User: {user_input}\nAI:") | |
| prompt = "\n".join(messages) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7, top_p=0.9) | |
| reply = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract the latest AI response | |
| if "AI:" in reply: | |
| reply = reply.split("AI:")[-1].strip() | |
| history.append((user_input, reply)) | |
| return reply, history | |
| # ------------------------------ | |
| # Create Gradio Chat Interface | |
| # ------------------------------ | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("<h2 style='text-align:center'>π EduBridge AI Chatbot</h2>") | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox(placeholder="Ask me anything educational...") | |
| clear = gr.Button("Clear Chat") | |
| msg.submit(chat_with_ai, [msg, chatbot], [chatbot, chatbot]) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| # ------------------------------ | |
| # Launch App | |
| # ------------------------------ | |
| demo.launch() | |