Spaces:
Runtime error
Runtime error
commit
Browse files- app.py +14 -8
- requirements.txt +7 -0
app.py
CHANGED
|
@@ -4,6 +4,8 @@ from gradio_client import Client, handle_file
|
|
| 4 |
from pathlib import Path
|
| 5 |
from gradio.utils import get_cache_folder
|
| 6 |
|
|
|
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
class Examples(gr.helpers.Examples):
|
|
@@ -63,6 +65,7 @@ def process_image_4(image_path, prompt):
|
|
| 63 |
|
| 64 |
inputs = []
|
| 65 |
for p in prompt:
|
|
|
|
| 66 |
image = Image.open(image_path)
|
| 67 |
|
| 68 |
w, h = image.size
|
|
@@ -78,7 +81,7 @@ def process_image_4(image_path, prompt):
|
|
| 78 |
'input_images': image.unsqueeze(0),
|
| 79 |
'original_size': torch.tensor([[w,h]]),
|
| 80 |
'target_size': torch.tensor([[768, 768]]),
|
| 81 |
-
'prompt': [
|
| 82 |
'coor_point': coor_point,
|
| 83 |
'point_labels': point_labels,
|
| 84 |
'generator': generator
|
|
@@ -88,11 +91,13 @@ def process_image_4(image_path, prompt):
|
|
| 88 |
return inputs
|
| 89 |
|
| 90 |
|
| 91 |
-
def
|
|
|
|
|
|
|
| 92 |
inputs = process_image_4(image_path, prompt)
|
| 93 |
-
return None
|
| 94 |
return client.predict(
|
| 95 |
-
|
| 96 |
api_name="/inf"
|
| 97 |
)
|
| 98 |
|
|
@@ -154,9 +159,10 @@ def run_demo_server():
|
|
| 154 |
queue=False,
|
| 155 |
).success(
|
| 156 |
# fn=process_pipe_matting,
|
| 157 |
-
fn=
|
| 158 |
inputs=[
|
| 159 |
matting_image_input,
|
|
|
|
| 160 |
],
|
| 161 |
outputs=[matting_image_output],
|
| 162 |
concurrency_limit=1,
|
|
@@ -176,11 +182,11 @@ def run_demo_server():
|
|
| 176 |
)
|
| 177 |
|
| 178 |
gr.Examples(
|
| 179 |
-
fn=
|
| 180 |
examples=[
|
| 181 |
-
"assets/person.jpg",
|
| 182 |
],
|
| 183 |
-
inputs=[matting_image_input],
|
| 184 |
outputs=[matting_image_output],
|
| 185 |
cache_examples=True,
|
| 186 |
# cache_examples=False,
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
from gradio.utils import get_cache_folder
|
| 6 |
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
class Examples(gr.helpers.Examples):
|
|
|
|
| 65 |
|
| 66 |
inputs = []
|
| 67 |
for p in prompt:
|
| 68 |
+
cur_p = map_prompt[p]
|
| 69 |
image = Image.open(image_path)
|
| 70 |
|
| 71 |
w, h = image.size
|
|
|
|
| 81 |
'input_images': image.unsqueeze(0),
|
| 82 |
'original_size': torch.tensor([[w,h]]),
|
| 83 |
'target_size': torch.tensor([[768, 768]]),
|
| 84 |
+
'prompt': [cur_p],
|
| 85 |
'coor_point': coor_point,
|
| 86 |
'point_labels': point_labels,
|
| 87 |
'generator': generator
|
|
|
|
| 91 |
return inputs
|
| 92 |
|
| 93 |
|
| 94 |
+
def inf(image_path, prompt):
|
| 95 |
+
print(image_path)
|
| 96 |
+
print(prompt)
|
| 97 |
inputs = process_image_4(image_path, prompt)
|
| 98 |
+
# return None
|
| 99 |
return client.predict(
|
| 100 |
+
data=inputs,
|
| 101 |
api_name="/inf"
|
| 102 |
)
|
| 103 |
|
|
|
|
| 159 |
queue=False,
|
| 160 |
).success(
|
| 161 |
# fn=process_pipe_matting,
|
| 162 |
+
fn=inf,
|
| 163 |
inputs=[
|
| 164 |
matting_image_input,
|
| 165 |
+
checkbox_group
|
| 166 |
],
|
| 167 |
outputs=[matting_image_output],
|
| 168 |
concurrency_limit=1,
|
|
|
|
| 182 |
)
|
| 183 |
|
| 184 |
gr.Examples(
|
| 185 |
+
fn=inf,
|
| 186 |
examples=[
|
| 187 |
+
["assets/person.jpg", ['depth', 'normal', 'entity', 'pose']]
|
| 188 |
],
|
| 189 |
+
inputs=[matting_image_input, checkbox_group],
|
| 190 |
outputs=[matting_image_output],
|
| 191 |
cache_examples=True,
|
| 192 |
# cache_examples=False,
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
diffusers
|
| 3 |
+
invisible_watermark
|
| 4 |
+
torch
|
| 5 |
+
transformers
|
| 6 |
+
xformers
|
| 7 |
+
sentencepiece
|