Spaces:
Runtime error
Runtime error
commit
Browse files- app.py +117 -30
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -8,6 +8,9 @@ import torch
|
|
| 8 |
import torchvision.transforms as transforms
|
| 9 |
from PIL import Image
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
class Examples(gr.helpers.Examples):
|
| 12 |
def __init__(self, *args, cached_folder=None, **kwargs):
|
| 13 |
super().__init__(*args, **kwargs, _initiated_directly=False)
|
|
@@ -17,17 +20,53 @@ class Examples(gr.helpers.Examples):
|
|
| 17 |
self.create()
|
| 18 |
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
client = Client("Canyu/Diception",
|
| 23 |
-
max_workers=3,
|
| 24 |
-
hf_token=HF_TOKEN)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
map_prompt = {
|
| 28 |
'depth': '[[image2depth]]',
|
| 29 |
'normal': '[[image2normal]]',
|
| 30 |
-
'pose': '[[image2pose]]',
|
| 31 |
'entity segmentation': '[[image2panoptic coarse]]',
|
| 32 |
'point segmentation': '[[image2segmentation]]',
|
| 33 |
'semantic segmentation': '[[image2semantic]]',
|
|
@@ -49,7 +88,13 @@ def load_additional_params(model_name):
|
|
| 49 |
# 返回加载的参数内容
|
| 50 |
return additional_params
|
| 51 |
|
| 52 |
-
def process_image_check(path_input, prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if path_input is None:
|
| 54 |
raise gr.Error(
|
| 55 |
"Missing image in the left pane: please upload an image first."
|
|
@@ -58,6 +103,23 @@ def process_image_check(path_input, prompt):
|
|
| 58 |
raise gr.Error(
|
| 59 |
"At least 1 prediction type is needed."
|
| 60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
|
|
@@ -83,10 +145,8 @@ def process_image_4(image_path, prompt):
|
|
| 83 |
return inputs
|
| 84 |
|
| 85 |
|
| 86 |
-
def inf(image_path, prompt):
|
| 87 |
-
|
| 88 |
-
print(prompt)
|
| 89 |
-
inputs = process_image_4(image_path, prompt)
|
| 90 |
# return None
|
| 91 |
return client.predict(
|
| 92 |
image=handle_file(image_path),
|
|
@@ -98,26 +158,34 @@ def clear_cache():
|
|
| 98 |
return None, None
|
| 99 |
|
| 100 |
def run_demo_server():
|
| 101 |
-
options = ['depth', 'normal', 'entity', 'pose']
|
| 102 |
gradio_theme = gr.themes.Default()
|
| 103 |
with gr.Blocks(
|
| 104 |
theme=gradio_theme,
|
| 105 |
title="Matting",
|
| 106 |
) as demo:
|
|
|
|
|
|
|
| 107 |
with gr.Row():
|
| 108 |
gr.Markdown("# Diception Demo")
|
| 109 |
with gr.Row():
|
| 110 |
gr.Markdown("### All results are generated using the same single model. To facilitate input processing, we separate point-prompted segmentation and semantic segmentation, as they require input points and segmentation targets.")
|
| 111 |
with gr.Row():
|
| 112 |
checkbox_group = gr.CheckboxGroup(choices=options, label="Select options:")
|
| 113 |
-
|
|
|
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column():
|
| 116 |
-
|
| 117 |
label="Input Image",
|
| 118 |
type="filepath",
|
| 119 |
)
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
with gr.Row():
|
| 122 |
matting_image_submit_btn = gr.Button(
|
| 123 |
value="Estimate Matting", variant="primary"
|
|
@@ -142,21 +210,18 @@ def run_demo_server():
|
|
| 142 |
|
| 143 |
|
| 144 |
|
| 145 |
-
img_clear_button.click(clear_cache, outputs=[
|
| 146 |
|
| 147 |
matting_image_submit_btn.click(
|
| 148 |
fn=process_image_check,
|
| 149 |
-
inputs=[
|
| 150 |
outputs=None,
|
| 151 |
preprocess=False,
|
| 152 |
queue=False,
|
| 153 |
).success(
|
| 154 |
# fn=process_pipe_matting,
|
| 155 |
fn=inf,
|
| 156 |
-
inputs=[
|
| 157 |
-
matting_image_input,
|
| 158 |
-
checkbox_group
|
| 159 |
-
],
|
| 160 |
outputs=[matting_image_output],
|
| 161 |
concurrency_limit=1,
|
| 162 |
)
|
|
@@ -168,23 +233,45 @@ def run_demo_server():
|
|
| 168 |
),
|
| 169 |
inputs=[],
|
| 170 |
outputs=[
|
| 171 |
-
|
| 172 |
matting_image_output,
|
| 173 |
],
|
| 174 |
queue=False,
|
| 175 |
)
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
demo.queue(
|
| 190 |
api_open=False,
|
|
|
|
| 8 |
import torchvision.transforms as transforms
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
+
import cv2
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
class Examples(gr.helpers.Examples):
|
| 15 |
def __init__(self, *args, cached_folder=None, **kwargs):
|
| 16 |
super().__init__(*args, **kwargs, _initiated_directly=False)
|
|
|
|
| 20 |
self.create()
|
| 21 |
|
| 22 |
|
| 23 |
+
# user click the image to get points, and show the points on the image
|
| 24 |
+
def get_point(img, sel_pix, evt: gr.SelectData):
|
| 25 |
+
if len(sel_pix) < 5:
|
| 26 |
+
sel_pix.append((evt.index, 1)) # default foreground_point
|
| 27 |
+
img = cv2.imread(img)
|
| 28 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 29 |
+
# draw points
|
| 30 |
+
|
| 31 |
+
for point, label in sel_pix:
|
| 32 |
+
cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
|
| 33 |
+
# if img[..., 0][0, 0] == img[..., 2][0, 0]: # BGR to RGB
|
| 34 |
+
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 35 |
+
print(sel_pix)
|
| 36 |
+
return img, sel_pix
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# undo the selected point
|
| 40 |
+
def undo_points(orig_img, sel_pix):
|
| 41 |
+
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
|
| 42 |
+
temp = cv2.imread(image_examples[orig_img][0])
|
| 43 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
| 44 |
+
else:
|
| 45 |
+
temp = cv2.imread(orig_img)
|
| 46 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
| 47 |
+
# draw points
|
| 48 |
+
if len(sel_pix) != 0:
|
| 49 |
+
sel_pix.pop()
|
| 50 |
+
for point, label in sel_pix:
|
| 51 |
+
cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
|
| 52 |
+
if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB
|
| 53 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
| 54 |
+
return temp, sel_pix
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# HF_TOKEN = os.environ.get('HF_KEY')
|
| 58 |
+
|
| 59 |
+
# client = Client("Canyu/Diception",
|
| 60 |
+
# max_workers=3,
|
| 61 |
+
# hf_token=HF_TOKEN)
|
| 62 |
+
|
| 63 |
+
colors = [(255, 0, 0), (0, 255, 0)]
|
| 64 |
+
markers = [1, 5]
|
| 65 |
|
| 66 |
map_prompt = {
|
| 67 |
'depth': '[[image2depth]]',
|
| 68 |
'normal': '[[image2normal]]',
|
| 69 |
+
'human pose': '[[image2pose]]',
|
| 70 |
'entity segmentation': '[[image2panoptic coarse]]',
|
| 71 |
'point segmentation': '[[image2segmentation]]',
|
| 72 |
'semantic segmentation': '[[image2semantic]]',
|
|
|
|
| 88 |
# 返回加载的参数内容
|
| 89 |
return additional_params
|
| 90 |
|
| 91 |
+
def process_image_check(path_input, prompt, sel_points, semantic):
|
| 92 |
+
print('=========== PROCESS IMAGE CHECK ===========')
|
| 93 |
+
print(f"Image Path: {path_input}")
|
| 94 |
+
print(f"Prompt: {prompt}")
|
| 95 |
+
print(f"Selected Points (before processing): {sel_points}")
|
| 96 |
+
print(f"Semantic Input: {semantic}")
|
| 97 |
+
print('===========================================')
|
| 98 |
if path_input is None:
|
| 99 |
raise gr.Error(
|
| 100 |
"Missing image in the left pane: please upload an image first."
|
|
|
|
| 103 |
raise gr.Error(
|
| 104 |
"At least 1 prediction type is needed."
|
| 105 |
)
|
| 106 |
+
if 'point segmentation' in prompt and len(sel_points) == 0:
|
| 107 |
+
raise gr.Error(
|
| 108 |
+
"At least 1 point is needed."
|
| 109 |
+
)
|
| 110 |
+
if 'point segmentation' not in prompt and len(sel_points) != 0:
|
| 111 |
+
raise gr.Error(
|
| 112 |
+
"You must select 'point segmentation' when performing point segmentation."
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
if 'semantic segmentation' in prompt and semantic == None:
|
| 116 |
+
raise gr.Error(
|
| 117 |
+
"Target category is needed."
|
| 118 |
+
)
|
| 119 |
+
if 'semantic segmentation' not in prompt and semantic != None:
|
| 120 |
+
raise gr.Error(
|
| 121 |
+
"You must select 'semantic segmentation' when performing semantic segmentation."
|
| 122 |
+
)
|
| 123 |
|
| 124 |
|
| 125 |
|
|
|
|
| 145 |
return inputs
|
| 146 |
|
| 147 |
|
| 148 |
+
def inf(image_path, prompt, sel_points, semantic):
|
| 149 |
+
inputs = process_image_4(image_path, prompt, sel_points, semantic)
|
|
|
|
|
|
|
| 150 |
# return None
|
| 151 |
return client.predict(
|
| 152 |
image=handle_file(image_path),
|
|
|
|
| 158 |
return None, None
|
| 159 |
|
| 160 |
def run_demo_server():
|
| 161 |
+
options = ['depth', 'normal', 'entity segmentation', 'human pose', 'point segmentation', 'semantic segmentation']
|
| 162 |
gradio_theme = gr.themes.Default()
|
| 163 |
with gr.Blocks(
|
| 164 |
theme=gradio_theme,
|
| 165 |
title="Matting",
|
| 166 |
) as demo:
|
| 167 |
+
selected_points = gr.State([]) # store points
|
| 168 |
+
original_image = gr.State(value=None) # store original image without points, default None
|
| 169 |
with gr.Row():
|
| 170 |
gr.Markdown("# Diception Demo")
|
| 171 |
with gr.Row():
|
| 172 |
gr.Markdown("### All results are generated using the same single model. To facilitate input processing, we separate point-prompted segmentation and semantic segmentation, as they require input points and segmentation targets.")
|
| 173 |
with gr.Row():
|
| 174 |
checkbox_group = gr.CheckboxGroup(choices=options, label="Select options:")
|
| 175 |
+
with gr.Row():
|
| 176 |
+
semantic_input = gr.Textbox(label="Category Name (for semantic segmentation only, in COCO)", placeholder="e.g. person/cat/dog/elephant......")
|
| 177 |
with gr.Row():
|
| 178 |
with gr.Column():
|
| 179 |
+
input_image = gr.Image(
|
| 180 |
label="Input Image",
|
| 181 |
type="filepath",
|
| 182 |
)
|
| 183 |
|
| 184 |
+
with gr.Column():
|
| 185 |
+
with gr.Row():
|
| 186 |
+
gr.Markdown('You can click on the image to select points prompt. At most 5 point.')
|
| 187 |
+
undo_button = gr.Button('Undo point')
|
| 188 |
+
|
| 189 |
with gr.Row():
|
| 190 |
matting_image_submit_btn = gr.Button(
|
| 191 |
value="Estimate Matting", variant="primary"
|
|
|
|
| 210 |
|
| 211 |
|
| 212 |
|
| 213 |
+
img_clear_button.click(clear_cache, outputs=[input_image, matting_image_output])
|
| 214 |
|
| 215 |
matting_image_submit_btn.click(
|
| 216 |
fn=process_image_check,
|
| 217 |
+
inputs=[input_image, checkbox_group, selected_points, semantic_input],
|
| 218 |
outputs=None,
|
| 219 |
preprocess=False,
|
| 220 |
queue=False,
|
| 221 |
).success(
|
| 222 |
# fn=process_pipe_matting,
|
| 223 |
fn=inf,
|
| 224 |
+
inputs=[input_image, checkbox_group, selected_points, semantic_input],
|
|
|
|
|
|
|
|
|
|
| 225 |
outputs=[matting_image_output],
|
| 226 |
concurrency_limit=1,
|
| 227 |
)
|
|
|
|
| 233 |
),
|
| 234 |
inputs=[],
|
| 235 |
outputs=[
|
| 236 |
+
input_image,
|
| 237 |
matting_image_output,
|
| 238 |
],
|
| 239 |
queue=False,
|
| 240 |
)
|
| 241 |
|
| 242 |
+
|
| 243 |
+
# once user upload an image, the original image is stored in `original_image`
|
| 244 |
+
def store_img(img):
|
| 245 |
+
return img, [] # when new image is uploaded, `selected_points` should be empty
|
| 246 |
+
input_image.upload(
|
| 247 |
+
store_img,
|
| 248 |
+
[input_image],
|
| 249 |
+
[original_image, selected_points]
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
input_image.select(
|
| 253 |
+
get_point,
|
| 254 |
+
[input_image, selected_points],
|
| 255 |
+
[input_image, selected_points],
|
| 256 |
)
|
| 257 |
+
|
| 258 |
+
undo_button.click(
|
| 259 |
+
undo_points,
|
| 260 |
+
[original_image, selected_points],
|
| 261 |
+
[input_image, selected_points]
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# gr.Examples(
|
| 265 |
+
# fn=inf,
|
| 266 |
+
# examples=[
|
| 267 |
+
# ["assets/person.jpg", ['depth', 'normal', 'entity segmentation', 'pose']]
|
| 268 |
+
# ],
|
| 269 |
+
# inputs=[input_image, checkbox_group],
|
| 270 |
+
# outputs=[matting_image_output],
|
| 271 |
+
# cache_examples=True,
|
| 272 |
+
# # cache_examples=False,
|
| 273 |
+
# # cached_folder="cache_dir",
|
| 274 |
+
# )
|
| 275 |
|
| 276 |
demo.queue(
|
| 277 |
api_open=False,
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ torch
|
|
| 5 |
transformers
|
| 6 |
xformers
|
| 7 |
sentencepiece
|
| 8 |
-
torchvision
|
|
|
|
|
|
| 5 |
transformers
|
| 6 |
xformers
|
| 7 |
sentencepiece
|
| 8 |
+
torchvision
|
| 9 |
+
opencv-python
|