Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +35 -35
- README.md +15 -12
- app.py +303 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,35 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Chest x-ray HybridGNet Segmentation
|
| 3 |
+
emoji: ⚡
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.42.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: gpl-3.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Demo of the HybridGNet model with 2 image-to-graph skip connections from: arxiv.org/abs/2203.10977
|
| 14 |
+
Original HybridGNet model: arxiv.org/abs/2106.09832
|
| 15 |
+
The training procedure was taken from: arxiv.org/abs/2211.07395
|
app.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import cv2
|
| 4 |
+
|
| 5 |
+
from models.HybridGNet2IGSC import Hybrid
|
| 6 |
+
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
|
| 7 |
+
import scipy.sparse as sp
|
| 8 |
+
import torch
|
| 9 |
+
from zipfile import ZipFile
|
| 10 |
+
|
| 11 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
hybrid = None
|
| 13 |
+
|
| 14 |
+
def getDenseMask(landmarks, h, w):
|
| 15 |
+
|
| 16 |
+
RL = landmarks[0:44]
|
| 17 |
+
LL = landmarks[44:94]
|
| 18 |
+
H = landmarks[94:]
|
| 19 |
+
|
| 20 |
+
img = np.zeros([h, w], dtype = 'uint8')
|
| 21 |
+
|
| 22 |
+
RL = RL.reshape(-1, 1, 2).astype('int')
|
| 23 |
+
LL = LL.reshape(-1, 1, 2).astype('int')
|
| 24 |
+
H = H.reshape(-1, 1, 2).astype('int')
|
| 25 |
+
|
| 26 |
+
img = cv2.drawContours(img, [RL], -1, 1, -1)
|
| 27 |
+
img = cv2.drawContours(img, [LL], -1, 1, -1)
|
| 28 |
+
img = cv2.drawContours(img, [H], -1, 2, -1)
|
| 29 |
+
|
| 30 |
+
return img
|
| 31 |
+
|
| 32 |
+
def getMasks(landmarks, h, w):
|
| 33 |
+
|
| 34 |
+
RL = landmarks[0:44]
|
| 35 |
+
LL = landmarks[44:94]
|
| 36 |
+
H = landmarks[94:]
|
| 37 |
+
|
| 38 |
+
RL = RL.reshape(-1, 1, 2).astype('int')
|
| 39 |
+
LL = LL.reshape(-1, 1, 2).astype('int')
|
| 40 |
+
H = H.reshape(-1, 1, 2).astype('int')
|
| 41 |
+
|
| 42 |
+
RL_mask = np.zeros([h, w], dtype = 'uint8')
|
| 43 |
+
LL_mask = np.zeros([h, w], dtype = 'uint8')
|
| 44 |
+
H_mask = np.zeros([h, w], dtype = 'uint8')
|
| 45 |
+
|
| 46 |
+
RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1)
|
| 47 |
+
LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1)
|
| 48 |
+
H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1)
|
| 49 |
+
|
| 50 |
+
return RL_mask, LL_mask, H_mask
|
| 51 |
+
|
| 52 |
+
def drawOnTop(img, landmarks, original_shape):
|
| 53 |
+
h, w = original_shape
|
| 54 |
+
output = getDenseMask(landmarks, h, w)
|
| 55 |
+
|
| 56 |
+
image = np.zeros([h, w, 3])
|
| 57 |
+
image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
|
| 58 |
+
image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float')
|
| 59 |
+
image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float')
|
| 60 |
+
|
| 61 |
+
image = np.clip(image, 0, 1)
|
| 62 |
+
|
| 63 |
+
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:]
|
| 64 |
+
|
| 65 |
+
# Draw the landmarks as dots
|
| 66 |
+
|
| 67 |
+
for l in RL:
|
| 68 |
+
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
|
| 69 |
+
for l in LL:
|
| 70 |
+
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
|
| 71 |
+
for l in H:
|
| 72 |
+
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1)
|
| 73 |
+
|
| 74 |
+
return image
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def loadModel(device):
|
| 78 |
+
A, AD, D, U = genMatrixesLungsHeart()
|
| 79 |
+
N1 = A.shape[0]
|
| 80 |
+
N2 = AD.shape[0]
|
| 81 |
+
|
| 82 |
+
A = sp.csc_matrix(A).tocoo()
|
| 83 |
+
AD = sp.csc_matrix(AD).tocoo()
|
| 84 |
+
D = sp.csc_matrix(D).tocoo()
|
| 85 |
+
U = sp.csc_matrix(U).tocoo()
|
| 86 |
+
|
| 87 |
+
D_ = [D.copy()]
|
| 88 |
+
U_ = [U.copy()]
|
| 89 |
+
|
| 90 |
+
config = {}
|
| 91 |
+
|
| 92 |
+
config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
|
| 93 |
+
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()]
|
| 94 |
+
|
| 95 |
+
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_))
|
| 96 |
+
|
| 97 |
+
config['latents'] = 64
|
| 98 |
+
config['inputsize'] = 1024
|
| 99 |
+
|
| 100 |
+
f = 32
|
| 101 |
+
config['filters'] = [2, f, f, f, f//2, f//2, f//2]
|
| 102 |
+
config['skip_features'] = f
|
| 103 |
+
|
| 104 |
+
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
|
| 105 |
+
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device)))
|
| 106 |
+
hybrid.eval()
|
| 107 |
+
|
| 108 |
+
return hybrid
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def pad_to_square(img):
|
| 112 |
+
h, w = img.shape[:2]
|
| 113 |
+
|
| 114 |
+
if h > w:
|
| 115 |
+
padw = (h - w)
|
| 116 |
+
auxw = padw % 2
|
| 117 |
+
img = np.pad(img, ((0, 0), (padw//2, padw//2 + auxw)), 'constant')
|
| 118 |
+
|
| 119 |
+
padh = 0
|
| 120 |
+
auxh = 0
|
| 121 |
+
|
| 122 |
+
else:
|
| 123 |
+
padh = (w - h)
|
| 124 |
+
auxh = padh % 2
|
| 125 |
+
img = np.pad(img, ((padh//2, padh//2 + auxh), (0, 0)), 'constant')
|
| 126 |
+
|
| 127 |
+
padw = 0
|
| 128 |
+
auxw = 0
|
| 129 |
+
|
| 130 |
+
return img, (padh, padw, auxh, auxw)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def preprocess(input_img):
|
| 134 |
+
img, padding = pad_to_square(input_img)
|
| 135 |
+
|
| 136 |
+
h, w = img.shape[:2]
|
| 137 |
+
if h != 1024 or w != 1024:
|
| 138 |
+
img = cv2.resize(img, (1024, 1024), interpolation = cv2.INTER_CUBIC)
|
| 139 |
+
|
| 140 |
+
return img, (h, w, padding)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def removePreprocess(output, info):
|
| 144 |
+
h, w, padding = info
|
| 145 |
+
|
| 146 |
+
if h != 1024 or w != 1024:
|
| 147 |
+
output = output * h
|
| 148 |
+
else:
|
| 149 |
+
output = output * 1024
|
| 150 |
+
|
| 151 |
+
padh, padw, auxh, auxw = padding
|
| 152 |
+
|
| 153 |
+
output[:, 0] = output[:, 0] - padw//2
|
| 154 |
+
output[:, 1] = output[:, 1] - padh//2
|
| 155 |
+
|
| 156 |
+
return output
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def zip_files(files):
|
| 160 |
+
with ZipFile("complete_results.zip", "w") as zipObj:
|
| 161 |
+
for idx, file in enumerate(files):
|
| 162 |
+
zipObj.write(file, arcname=file.split("/")[-1])
|
| 163 |
+
return "complete_results.zip"
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def calculate_ctr(landmarks):
|
| 167 |
+
H = landmarks[94:]
|
| 168 |
+
RL = landmarks[0:44]
|
| 169 |
+
LL = landmarks[44:94]
|
| 170 |
+
cardiac_width = np.max(H[:,0]) - np.min(H[:,0])
|
| 171 |
+
thoracic_width = max(np.max(RL[:,0]), np.max(LL[:,0])) - min(np.min(RL[:,0]), np.min(LL[:,0]))
|
| 172 |
+
ctr = cardiac_width / thoracic_width if thoracic_width > 0 else 0
|
| 173 |
+
return ctr
|
| 174 |
+
|
| 175 |
+
def segment(input_img):
|
| 176 |
+
global hybrid, device
|
| 177 |
+
|
| 178 |
+
if hybrid is None:
|
| 179 |
+
hybrid = loadModel(device)
|
| 180 |
+
|
| 181 |
+
input_img = cv2.imread(input_img, 0) / 255.0
|
| 182 |
+
original_shape = input_img.shape[:2]
|
| 183 |
+
|
| 184 |
+
img, (h, w, padding) = preprocess(input_img)
|
| 185 |
+
|
| 186 |
+
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
|
| 187 |
+
|
| 188 |
+
with torch.no_grad():
|
| 189 |
+
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2)
|
| 190 |
+
|
| 191 |
+
output = removePreprocess(output, (h, w, padding))
|
| 192 |
+
|
| 193 |
+
output = output.astype('int')
|
| 194 |
+
|
| 195 |
+
outseg = drawOnTop(input_img, output, original_shape)
|
| 196 |
+
|
| 197 |
+
seg_to_save = (outseg.copy() * 255).astype('uint8')
|
| 198 |
+
cv2.imwrite("tmp/overlap_segmentation.png" , cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR))
|
| 199 |
+
|
| 200 |
+
RL = output[0:44]
|
| 201 |
+
LL = output[44:94]
|
| 202 |
+
H = output[94:]
|
| 203 |
+
|
| 204 |
+
np.savetxt("tmp/RL_landmarks.txt", RL, delimiter=" ", fmt="%d")
|
| 205 |
+
np.savetxt("tmp/LL_landmarks.txt", LL, delimiter=" ", fmt="%d")
|
| 206 |
+
np.savetxt("tmp/H_landmarks.txt", H, delimiter=" ", fmt="%d")
|
| 207 |
+
|
| 208 |
+
RL_mask, LL_mask, H_mask = getMasks(output, original_shape[0], original_shape[1])
|
| 209 |
+
|
| 210 |
+
cv2.imwrite("tmp/RL_mask.png", RL_mask)
|
| 211 |
+
cv2.imwrite("tmp/LL_mask.png", LL_mask)
|
| 212 |
+
cv2.imwrite("tmp/H_mask.png", H_mask)
|
| 213 |
+
|
| 214 |
+
zip = zip_files(["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png"])
|
| 215 |
+
|
| 216 |
+
ctr_value = calculate_ctr(output)
|
| 217 |
+
|
| 218 |
+
return outseg, ["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png", zip], ctr_value
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
if __name__ == "__main__":
|
| 222 |
+
|
| 223 |
+
with gr.Blocks() as demo:
|
| 224 |
+
|
| 225 |
+
gr.Markdown("""
|
| 226 |
+
# Chest X-ray HybridGNet Segmentation.
|
| 227 |
+
|
| 228 |
+
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
|
| 229 |
+
|
| 230 |
+
Instructions:
|
| 231 |
+
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
|
| 232 |
+
2. Click on "Segment Image".
|
| 233 |
+
|
| 234 |
+
Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation.
|
| 235 |
+
|
| 236 |
+
Please check citations below.
|
| 237 |
+
""")
|
| 238 |
+
|
| 239 |
+
with gr.Tab("Segment Image"):
|
| 240 |
+
with gr.Row():
|
| 241 |
+
with gr.Column():
|
| 242 |
+
image_input = gr.Image(type="filepath", height=750)
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
clear_button = gr.Button("Clear")
|
| 246 |
+
image_button = gr.Button("Segment Image")
|
| 247 |
+
|
| 248 |
+
gr.Examples(inputs=image_input, examples=['utils/example1.jpg','utils/example2.jpg','utils/example3.png','utils/example4.jpg'])
|
| 249 |
+
|
| 250 |
+
with gr.Column():
|
| 251 |
+
image_output = gr.Image(type="filepath", height=750)
|
| 252 |
+
results = gr.File()
|
| 253 |
+
ctr_output = gr.Number(label="CTR (Cardiothoracic Ratio)")
|
| 254 |
+
|
| 255 |
+
gr.Markdown("""
|
| 256 |
+
If you use this code, please cite:
|
| 257 |
+
|
| 258 |
+
```
|
| 259 |
+
@article{gaggion2022TMI,
|
| 260 |
+
doi = {10.1109/tmi.2022.3224660},
|
| 261 |
+
url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
|
| 262 |
+
year = 2022,
|
| 263 |
+
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
|
| 264 |
+
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
|
| 265 |
+
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
|
| 266 |
+
journal = {{IEEE} Transactions on Medical Imaging}
|
| 267 |
+
}
|
| 268 |
+
```
|
| 269 |
+
|
| 270 |
+
This model was trained following the procedure explained on:
|
| 271 |
+
|
| 272 |
+
```
|
| 273 |
+
@INPROCEEDINGS{gaggion2022ISBI,
|
| 274 |
+
author={Gaggion, Nicolás and Vakalopoulou, Maria and Milone, Diego H. and Ferrante, Enzo},
|
| 275 |
+
booktitle={2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)},
|
| 276 |
+
title={Multi-Center Anatomical Segmentation with Heterogeneous Labels Via Landmark-Based Models},
|
| 277 |
+
year={2023},
|
| 278 |
+
volume={},
|
| 279 |
+
number={},
|
| 280 |
+
pages={1-5},
|
| 281 |
+
doi={10.1109/ISBI53787.2023.10230691}
|
| 282 |
+
}
|
| 283 |
+
```
|
| 284 |
+
|
| 285 |
+
Example images extracted from Wikipedia, released under:
|
| 286 |
+
1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg
|
| 287 |
+
2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg
|
| 288 |
+
3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg
|
| 289 |
+
4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg
|
| 290 |
+
|
| 291 |
+
Author: Nicolás Gaggion
|
| 292 |
+
Website: [ngaggion.github.io](https://ngaggion.github.io/)
|
| 293 |
+
|
| 294 |
+
""")
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
clear_button.click(lambda: None, None, image_input, queue=False)
|
| 298 |
+
clear_button.click(lambda: None, None, image_output, queue=False)
|
| 299 |
+
clear_button.click(lambda: None, None, ctr_output, queue=False)
|
| 300 |
+
|
| 301 |
+
image_button.click(segment, inputs=image_input, outputs=[image_output, results, ctr_output], queue=False)
|
| 302 |
+
|
| 303 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.0.1
|
| 2 |
+
numpy==1.25.0
|
| 3 |
+
opencv-python==4.8.0.74
|
| 4 |
+
scipy==1.10.1
|
| 5 |
+
torch_geometric==2.3.0
|
| 6 |
+
torchvision
|
| 7 |
+
gradio==4.15.0
|