Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from archs.model import FourNet
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
opt = parse(path_opt)
|
| 11 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 12 |
+
#define some auxiliary functions
|
| 13 |
+
pil_to_tensor = transforms.ToTensor()
|
| 14 |
+
|
| 15 |
+
# define some parameters based on the run we want to make
|
| 16 |
+
|
| 17 |
+
model = FourNet(nf = 16)
|
| 18 |
+
|
| 19 |
+
checkpoints = torch.load('./models/NAFourNet16_LOLv2Real.pt', map_location=device)
|
| 20 |
+
|
| 21 |
+
model.load_state_dict(checkpoints['model_state_dict'])
|
| 22 |
+
|
| 23 |
+
model = model.to(device)
|
| 24 |
+
|
| 25 |
+
def load_img (filename):
|
| 26 |
+
img = Image.open(filename).convert("RGB")
|
| 27 |
+
img_tensor = pil_to_tensor(img)
|
| 28 |
+
return img_tensor
|
| 29 |
+
|
| 30 |
+
def process_img(image):
|
| 31 |
+
img = np.array(image)
|
| 32 |
+
img = img / 255.
|
| 33 |
+
img = img.astype(np.float32)
|
| 34 |
+
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
|
| 35 |
+
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
x_hat = model(y)
|
| 38 |
+
|
| 39 |
+
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
|
| 40 |
+
restored_img = np.clip(restored_img, 0. , 1.)
|
| 41 |
+
|
| 42 |
+
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
| 43 |
+
return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img))
|
| 44 |
+
|
| 45 |
+
title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗"
|
| 46 |
+
description = ''' ## [Efficient Low-Light Enhancement](https://github.com/cidautai/NAFourNet)
|
| 47 |
+
|
| 48 |
+
[Juan Carlos Benito](https://github.com/juaben)
|
| 49 |
+
|
| 50 |
+
Fundación Cidaut
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
|
| 54 |
+
**This demo expects an image with some degradations.**
|
| 55 |
+
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
|
| 56 |
+
|
| 57 |
+
<br>
|
| 58 |
+
'''
|
| 59 |
+
|
| 60 |
+
examples = [['examples/inputs/0010.png'],
|
| 61 |
+
['examples/inputs/0060.png'],
|
| 62 |
+
['examples/inputs/0075.png'],
|
| 63 |
+
["examples/inputs/0087.png"],
|
| 64 |
+
["examples/inputs/0088.png"]]
|
| 65 |
+
|
| 66 |
+
css = """
|
| 67 |
+
.image-frame img, .image-container img {
|
| 68 |
+
width: auto;
|
| 69 |
+
height: auto;
|
| 70 |
+
max-width: none;
|
| 71 |
+
}
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
demo = gr.Interface(
|
| 75 |
+
fn = process_img,
|
| 76 |
+
inputs = [
|
| 77 |
+
gr.Image(type = 'pil', label = 'input')
|
| 78 |
+
],
|
| 79 |
+
outputs = [gr.Image(type='pil', label = 'output')],
|
| 80 |
+
title = title,
|
| 81 |
+
description = description,
|
| 82 |
+
examples = examples,
|
| 83 |
+
css = css
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
if __name__ == '__main__':
|
| 87 |
+
demo.launch()
|