udpated so that every model uploaded is verified - Adithya S K
Browse files
app.py
CHANGED
|
@@ -68,6 +68,7 @@ def main():
|
|
| 68 |
for item in data:
|
| 69 |
model_name = item.get("name")
|
| 70 |
language = item.get("language")
|
|
|
|
| 71 |
try:
|
| 72 |
ALL = item["result"]["all"]["acc_norm"]
|
| 73 |
except KeyError:
|
|
@@ -110,6 +111,7 @@ def main():
|
|
| 110 |
"Boolq": Boolq,
|
| 111 |
"MMLU": MMLU,
|
| 112 |
"Translation": Translation,
|
|
|
|
| 113 |
})
|
| 114 |
|
| 115 |
df = pd.DataFrame(table_data)
|
|
@@ -124,7 +126,11 @@ def main():
|
|
| 124 |
|
| 125 |
title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
|
| 130 |
col1, col2 = st.columns(2)
|
|
@@ -137,14 +143,11 @@ def main():
|
|
| 137 |
'Pick Languages',
|
| 138 |
['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"],['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"])
|
| 139 |
if on:
|
| 140 |
-
# Loop through each selected language
|
| 141 |
for language in language_options:
|
| 142 |
-
filtered_df = df[df['Language'] == language]
|
| 143 |
-
# Check if the filtered dataframe is not empty
|
| 144 |
if not filtered_df.empty:
|
| 145 |
st.subheader(f"{language.capitalize()[0]}{language[1:]}")
|
| 146 |
filtered_df.reset_index(drop=True, inplace=True)
|
| 147 |
-
# Display filtered dataframe
|
| 148 |
filtered_df = get_model_info(filtered_df)
|
| 149 |
if title:
|
| 150 |
if ';' in title:
|
|
@@ -152,25 +155,19 @@ def main():
|
|
| 152 |
filtered_df = df[df['Model'].isin(model_names)]
|
| 153 |
else:
|
| 154 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 157 |
|
| 158 |
-
# Calculate average across selected benchmark columns
|
| 159 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 160 |
filtered_df.index += 1
|
| 161 |
st.dataframe(filtered_df, use_container_width=True)
|
| 162 |
elif benchmark_options or language_options:
|
| 163 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 164 |
-
|
| 165 |
-
# Calculate average across selected benchmark columns
|
| 166 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 167 |
-
|
| 168 |
-
filtered_df = get_model_info(filtered_df)
|
| 169 |
-
filtered_df.index += 1
|
| 170 |
st.dataframe(filtered_df, use_container_width=True)
|
| 171 |
-
# st.write('Feature activated!')
|
| 172 |
else:
|
| 173 |
-
|
| 174 |
if title:
|
| 175 |
if ';' in title:
|
| 176 |
model_names = [name.strip() for name in title.split(';')]
|
|
@@ -179,22 +176,18 @@ def main():
|
|
| 179 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
| 180 |
|
| 181 |
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
|
|
|
| 182 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 183 |
|
| 184 |
-
# Calculate average across selected benchmark columns
|
| 185 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 186 |
filtered_df.index += 1
|
| 187 |
-
# Display the filtered DataFrame
|
| 188 |
st.dataframe(filtered_df, use_container_width=True)
|
| 189 |
elif benchmark_options or language_options:
|
| 190 |
filtered_df = df[df['Language'].isin(language_options)]
|
|
|
|
| 191 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 192 |
|
| 193 |
-
# Calculate average across selected benchmark columns
|
| 194 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 195 |
-
|
| 196 |
-
filtered_df = get_model_info(filtered_df)
|
| 197 |
-
filtered_df.index += 1
|
| 198 |
st.dataframe(filtered_df, use_container_width=True)
|
| 199 |
|
| 200 |
|
|
|
|
| 68 |
for item in data:
|
| 69 |
model_name = item.get("name")
|
| 70 |
language = item.get("language")
|
| 71 |
+
is_verified= item.get("is_verified")
|
| 72 |
try:
|
| 73 |
ALL = item["result"]["all"]["acc_norm"]
|
| 74 |
except KeyError:
|
|
|
|
| 111 |
"Boolq": Boolq,
|
| 112 |
"MMLU": MMLU,
|
| 113 |
"Translation": Translation,
|
| 114 |
+
"Verified": is_verified,
|
| 115 |
})
|
| 116 |
|
| 117 |
df = pd.DataFrame(table_data)
|
|
|
|
| 126 |
|
| 127 |
title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
|
| 128 |
|
| 129 |
+
option_column1, option_column2 = st.columns(2)
|
| 130 |
+
with option_column1:
|
| 131 |
+
on = st.checkbox('Sort by Language')
|
| 132 |
+
with option_column2:
|
| 133 |
+
is_verified = st.checkbox('Verified')
|
| 134 |
|
| 135 |
|
| 136 |
col1, col2 = st.columns(2)
|
|
|
|
| 143 |
'Pick Languages',
|
| 144 |
['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"],['kannada', 'hindi', 'tamil', 'telegu','gujarati','marathi','malayalam',"english"])
|
| 145 |
if on:
|
|
|
|
| 146 |
for language in language_options:
|
| 147 |
+
filtered_df = df[(df['Language'] == language) & (df['Verified'] == is_verified)]
|
|
|
|
| 148 |
if not filtered_df.empty:
|
| 149 |
st.subheader(f"{language.capitalize()[0]}{language[1:]}")
|
| 150 |
filtered_df.reset_index(drop=True, inplace=True)
|
|
|
|
| 151 |
filtered_df = get_model_info(filtered_df)
|
| 152 |
if title:
|
| 153 |
if ';' in title:
|
|
|
|
| 155 |
filtered_df = df[df['Model'].isin(model_names)]
|
| 156 |
else:
|
| 157 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
| 158 |
+
|
| 159 |
+
filtered_df = filtered_df[filtered_df['Language'] == language]
|
| 160 |
+
filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
|
| 161 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 162 |
|
|
|
|
| 163 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 164 |
filtered_df.index += 1
|
| 165 |
st.dataframe(filtered_df, use_container_width=True)
|
| 166 |
elif benchmark_options or language_options:
|
| 167 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
|
|
|
|
|
|
| 168 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
|
|
|
|
|
|
|
|
|
| 169 |
st.dataframe(filtered_df, use_container_width=True)
|
|
|
|
| 170 |
else:
|
|
|
|
| 171 |
if title:
|
| 172 |
if ';' in title:
|
| 173 |
model_names = [name.strip() for name in title.split(';')]
|
|
|
|
| 176 |
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
| 177 |
|
| 178 |
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
| 179 |
+
filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
|
| 180 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 181 |
|
|
|
|
| 182 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 183 |
filtered_df.index += 1
|
|
|
|
| 184 |
st.dataframe(filtered_df, use_container_width=True)
|
| 185 |
elif benchmark_options or language_options:
|
| 186 |
filtered_df = df[df['Language'].isin(language_options)]
|
| 187 |
+
filtered_df = filtered_df[filtered_df['Verified'] == is_verified]
|
| 188 |
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 189 |
|
|
|
|
| 190 |
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
|
|
|
|
|
|
|
|
|
| 191 |
st.dataframe(filtered_df, use_container_width=True)
|
| 192 |
|
| 193 |
|