import streamlit as st
from streamlit_drawable_canvas import st_canvas
from keras.models import load_model
import numpy as np
import cv2
st.set_page_config(page_title="Digit AI", layout="centered")
st.markdown("""
""", unsafe_allow_html=True)
st.markdown("
Digit Recognizer
", unsafe_allow_html=True)
st.markdown("Draw a digit (0–9) below and see what the AI thinks it is!
", unsafe_allow_html=True)
st.sidebar.markdown("### ✏️ Drawing Settings")
drawing_mode = st.sidebar.selectbox("Tool", ("freedraw", "line", "rect", "circle", "transform"))
stroke_width = st.sidebar.slider("Stroke Width", 1, 25, 10)
stroke_color = st.sidebar.color_picker("Stroke Color", "#FFFFFF")
bg_color = st.sidebar.color_picker("Background Color", "#000000")
realtime_update = st.sidebar.checkbox("Update Realtime", True)
@st.cache_resource
def load_mnist_model():
return load_model("digit_recognization.keras")
model = load_mnist_model()
st.markdown('', unsafe_allow_html=True)
canvas_result = st_canvas(
fill_color="rgba(255, 255, 255, 0.05)",
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
update_streamlit=realtime_update,
height=280,
width=280,
drawing_mode=drawing_mode,
key="canvas"
)
st.markdown('
', unsafe_allow_html=True)
if canvas_result.image_data is not None:
img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY)
img_resized = cv2.resize(img, (28, 28))
img_normalized = img_resized / 255.0
img_reshaped = img_normalized.reshape((1, 28, 28))
prediction = model.predict(img_reshaped)
predicted_digit = np.argmax(prediction)
st.markdown(f"Prediction: {predicted_digit}
", unsafe_allow_html=True)
st.markdown(f"{['0️⃣','1️⃣','2️⃣','3️⃣','4️⃣','5️⃣','6️⃣','7️⃣','8️⃣','9️⃣'][predicted_digit]}
", unsafe_allow_html=True)