import streamlit as st from streamlit_drawable_canvas import st_canvas from keras.models import load_model import numpy as np import cv2 st.set_page_config(page_title="Digit AI", layout="centered") st.markdown(""" """, unsafe_allow_html=True) st.markdown("

Digit Recognizer

", unsafe_allow_html=True) st.markdown("

Draw a digit (0–9) below and see what the AI thinks it is!

", unsafe_allow_html=True) st.sidebar.markdown("### ✏️ Drawing Settings") drawing_mode = st.sidebar.selectbox("Tool", ("freedraw", "line", "rect", "circle", "transform")) stroke_width = st.sidebar.slider("Stroke Width", 1, 25, 10) stroke_color = st.sidebar.color_picker("Stroke Color", "#FFFFFF") bg_color = st.sidebar.color_picker("Background Color", "#000000") realtime_update = st.sidebar.checkbox("Update Realtime", True) @st.cache_resource def load_mnist_model(): return load_model("digit_recognization.keras") model = load_mnist_model() st.markdown('
', unsafe_allow_html=True) canvas_result = st_canvas( fill_color="rgba(255, 255, 255, 0.05)", stroke_width=stroke_width, stroke_color=stroke_color, background_color=bg_color, update_streamlit=realtime_update, height=280, width=280, drawing_mode=drawing_mode, key="canvas" ) st.markdown('
', unsafe_allow_html=True) if canvas_result.image_data is not None: img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY) img_resized = cv2.resize(img, (28, 28)) img_normalized = img_resized / 255.0 img_reshaped = img_normalized.reshape((1, 28, 28)) prediction = model.predict(img_reshaped) predicted_digit = np.argmax(prediction) st.markdown(f"
Prediction: {predicted_digit}
", unsafe_allow_html=True) st.markdown(f"
{['0️⃣','1️⃣','2️⃣','3️⃣','4️⃣','5️⃣','6️⃣','7️⃣','8️⃣','9️⃣'][predicted_digit]}
", unsafe_allow_html=True)