Spaces:
Running
Running
File size: 30,287 Bytes
7c07ade 33b0f43 7c07ade 62d32ab 33b0f43 7c07ade 33b0f43 7c07ade 33b0f43 62d32ab 33b0f43 7c07ade 20ba79b 33b0f43 7c07ade 33b0f43 77627ff 33b0f43 20ba79b 33b0f43 5c8b030 33b0f43 20ba79b 33b0f43 20ba79b 33b0f43 d0b14c0 33b0f43 d0b14c0 33b0f43 20ba79b 33b0f43 5c8b030 33b0f43 7c07ade 33b0f43 7c07ade 33b0f43 7ecca95 33b0f43 5c8b030 33b0f43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 |
# Phase 4 Implementation Spec: Orchestrator & UI
**Goal**: Connect the Brain and the Body, then give it a Face.
**Philosophy**: "Streaming is Trust."
**Prerequisite**: Phase 3 complete (all judge tests passing)
---
## 1. The Slice Definition
This slice connects:
1. **Orchestrator**: The state machine (While loop) calling Search -> Judge.
2. **UI**: Gradio interface that visualizes the loop.
**Files to Create/Modify**:
- `src/orchestrator.py` - Agent loop logic
- `src/app.py` - Gradio UI
- `tests/unit/test_orchestrator.py` - Unit tests
- `Dockerfile` - Container for deployment
- `README.md` - Usage instructions (update)
---
## 2. Agent Events (`src/utils/models.py`)
Add event types for streaming UI updates:
```python
"""Add to src/utils/models.py (after JudgeAssessment models)."""
from pydantic import BaseModel, Field
from typing import Literal, Any
from datetime import datetime
class AgentEvent(BaseModel):
"""Event emitted by the orchestrator for UI streaming."""
type: Literal[
"started",
"searching",
"search_complete",
"judging",
"judge_complete",
"looping",
"synthesizing",
"complete",
"error",
]
message: str
data: Any = None
timestamp: datetime = Field(default_factory=datetime.now)
iteration: int = 0
def to_markdown(self) -> str:
"""Format event as markdown for chat display."""
icons = {
"started": "π",
"searching": "π",
"search_complete": "π",
"judging": "π§ ",
"judge_complete": "β
",
"looping": "π",
"synthesizing": "π",
"complete": "π",
"error": "β",
}
icon = icons.get(self.type, "β’")
return f"{icon} **{self.type.upper()}**: {self.message}"
class OrchestratorConfig(BaseModel):
"""Configuration for the orchestrator."""
max_iterations: int = Field(default=5, ge=1, le=10)
max_results_per_tool: int = Field(default=10, ge=1, le=50)
search_timeout: float = Field(default=30.0, ge=5.0, le=120.0)
```
---
## 3. The Orchestrator (`src/orchestrator.py`)
This is the "Agent" logic β the while loop that drives search and judgment.
```python
"""Orchestrator - the agent loop connecting Search and Judge."""
import asyncio
from typing import AsyncGenerator, List, Protocol
import structlog
from src.utils.models import (
Evidence,
SearchResult,
JudgeAssessment,
AgentEvent,
OrchestratorConfig,
)
logger = structlog.get_logger()
class SearchHandlerProtocol(Protocol):
"""Protocol for search handler."""
async def execute(self, query: str, max_results_per_tool: int = 10) -> SearchResult:
...
class JudgeHandlerProtocol(Protocol):
"""Protocol for judge handler."""
async def assess(self, question: str, evidence: List[Evidence]) -> JudgeAssessment:
...
class Orchestrator:
"""
The agent orchestrator - runs the Search -> Judge -> Loop cycle.
This is a generator-based design that yields events for real-time UI updates.
"""
def __init__(
self,
search_handler: SearchHandlerProtocol,
judge_handler: JudgeHandlerProtocol,
config: OrchestratorConfig | None = None,
):
"""
Initialize the orchestrator.
Args:
search_handler: Handler for executing searches
judge_handler: Handler for assessing evidence
config: Optional configuration (uses defaults if not provided)
"""
self.search = search_handler
self.judge = judge_handler
self.config = config or OrchestratorConfig()
self.history: List[dict] = []
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
"""
Run the agent loop for a query.
Yields AgentEvent objects for each step, allowing real-time UI updates.
Args:
query: The user's research question
Yields:
AgentEvent objects for each step of the process
"""
logger.info("Starting orchestrator", query=query)
yield AgentEvent(
type="started",
message=f"Starting research for: {query}",
iteration=0,
)
all_evidence: List[Evidence] = []
current_queries = [query]
iteration = 0
while iteration < self.config.max_iterations:
iteration += 1
logger.info("Iteration", iteration=iteration, queries=current_queries)
# === SEARCH PHASE ===
yield AgentEvent(
type="searching",
message=f"Searching for: {', '.join(current_queries[:3])}...",
iteration=iteration,
)
try:
# Execute searches for all current queries
search_tasks = [
self.search.execute(q, self.config.max_results_per_tool)
for q in current_queries[:3] # Limit to 3 queries per iteration
]
search_results = await asyncio.gather(*search_tasks, return_exceptions=True)
# Collect evidence from successful searches
new_evidence: List[Evidence] = []
errors: List[str] = []
for q, result in zip(current_queries[:3], search_results):
if isinstance(result, Exception):
errors.append(f"Search for '{q}' failed: {str(result)}")
else:
new_evidence.extend(result.evidence)
errors.extend(result.errors)
# Deduplicate evidence by URL
seen_urls = {e.citation.url for e in all_evidence}
unique_new = [e for e in new_evidence if e.citation.url not in seen_urls]
all_evidence.extend(unique_new)
yield AgentEvent(
type="search_complete",
message=f"Found {len(unique_new)} new sources ({len(all_evidence)} total)",
data={"new_count": len(unique_new), "total_count": len(all_evidence)},
iteration=iteration,
)
if errors:
logger.warning("Search errors", errors=errors)
except Exception as e:
logger.error("Search phase failed", error=str(e))
yield AgentEvent(
type="error",
message=f"Search failed: {str(e)}",
iteration=iteration,
)
continue
# === JUDGE PHASE ===
yield AgentEvent(
type="judging",
message=f"Evaluating {len(all_evidence)} sources...",
iteration=iteration,
)
try:
assessment = await self.judge.assess(query, all_evidence)
yield AgentEvent(
type="judge_complete",
message=f"Assessment: {assessment.recommendation} (confidence: {assessment.confidence:.0%})",
data={
"sufficient": assessment.sufficient,
"confidence": assessment.confidence,
"mechanism_score": assessment.details.mechanism_score,
"clinical_score": assessment.details.clinical_evidence_score,
},
iteration=iteration,
)
# Record this iteration in history
self.history.append({
"iteration": iteration,
"queries": current_queries,
"evidence_count": len(all_evidence),
"assessment": assessment.model_dump(),
})
# === DECISION PHASE ===
if assessment.sufficient and assessment.recommendation == "synthesize":
yield AgentEvent(
type="synthesizing",
message="Evidence sufficient! Preparing synthesis...",
iteration=iteration,
)
# Generate final response
final_response = self._generate_synthesis(query, all_evidence, assessment)
yield AgentEvent(
type="complete",
message=final_response,
data={
"evidence_count": len(all_evidence),
"iterations": iteration,
"drug_candidates": assessment.details.drug_candidates,
"key_findings": assessment.details.key_findings,
},
iteration=iteration,
)
return
else:
# Need more evidence - prepare next queries
current_queries = assessment.next_search_queries or [
f"{query} mechanism of action",
f"{query} clinical evidence",
]
yield AgentEvent(
type="looping",
message=f"Need more evidence. Next searches: {', '.join(current_queries[:2])}...",
data={"next_queries": current_queries},
iteration=iteration,
)
except Exception as e:
logger.error("Judge phase failed", error=str(e))
yield AgentEvent(
type="error",
message=f"Assessment failed: {str(e)}",
iteration=iteration,
)
continue
# Max iterations reached
yield AgentEvent(
type="complete",
message=self._generate_partial_synthesis(query, all_evidence),
data={
"evidence_count": len(all_evidence),
"iterations": iteration,
"max_reached": True,
},
iteration=iteration,
)
def _generate_synthesis(
self,
query: str,
evidence: List[Evidence],
assessment: JudgeAssessment,
) -> str:
"""
Generate the final synthesis response.
Args:
query: The original question
evidence: All collected evidence
assessment: The final assessment
Returns:
Formatted synthesis as markdown
"""
drug_list = "\n".join([f"- **{d}**" for d in assessment.details.drug_candidates]) or "- No specific candidates identified"
findings_list = "\n".join([f"- {f}" for f in assessment.details.key_findings]) or "- See evidence below"
citations = "\n".join([
f"{i+1}. [{e.citation.title}]({e.citation.url}) ({e.citation.source.upper()}, {e.citation.date})"
for i, e in enumerate(evidence[:10]) # Limit to 10 citations
])
return f"""## Drug Repurposing Analysis
### Question
{query}
### Drug Candidates
{drug_list}
### Key Findings
{findings_list}
### Assessment
- **Mechanism Score**: {assessment.details.mechanism_score}/10
- **Clinical Evidence Score**: {assessment.details.clinical_evidence_score}/10
- **Confidence**: {assessment.confidence:.0%}
### Reasoning
{assessment.reasoning}
### Citations ({len(evidence)} sources)
{citations}
---
*Analysis based on {len(evidence)} sources across {len(self.history)} iterations.*
"""
def _generate_partial_synthesis(
self,
query: str,
evidence: List[Evidence],
) -> str:
"""
Generate a partial synthesis when max iterations reached.
Args:
query: The original question
evidence: All collected evidence
Returns:
Formatted partial synthesis as markdown
"""
citations = "\n".join([
f"{i+1}. [{e.citation.title}]({e.citation.url}) ({e.citation.source.upper()})"
for i, e in enumerate(evidence[:10])
])
return f"""## Partial Analysis (Max Iterations Reached)
### Question
{query}
### Status
Maximum search iterations reached. The evidence gathered may be incomplete.
### Evidence Collected
Found {len(evidence)} sources. Consider refining your query for more specific results.
### Citations
{citations}
---
*Consider searching with more specific terms or drug names.*
"""
```
---
## 4. The Gradio UI (`src/app.py`)
Using Gradio 5 generator pattern for real-time streaming.
```python
"""Gradio UI for DeepCritical agent."""
import asyncio
import gradio as gr
from typing import AsyncGenerator
from src.orchestrator import Orchestrator
from src.tools.pubmed import PubMedTool
from src.tools.websearch import WebTool
from src.tools.search_handler import SearchHandler
from src.agent_factory.judges import JudgeHandler, MockJudgeHandler
from src.utils.models import OrchestratorConfig, AgentEvent
def create_orchestrator(use_mock: bool = False) -> Orchestrator:
"""
Create an orchestrator instance.
Args:
use_mock: If True, use MockJudgeHandler (no API key needed)
Returns:
Configured Orchestrator instance
"""
# Create search tools
search_handler = SearchHandler(
tools=[PubMedTool(), WebTool()],
timeout=30.0,
)
# Create judge (mock or real)
if use_mock:
judge_handler = MockJudgeHandler()
else:
judge_handler = JudgeHandler()
# Create orchestrator
config = OrchestratorConfig(
max_iterations=5,
max_results_per_tool=10,
)
return Orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
)
async def research_agent(
message: str,
history: list[dict],
) -> AsyncGenerator[str, None]:
"""
Gradio chat function that runs the research agent.
Args:
message: User's research question
history: Chat history (Gradio format)
Yields:
Markdown-formatted responses for streaming
"""
if not message.strip():
yield "Please enter a research question."
return
# Create orchestrator (use mock if no API key)
import os
use_mock = not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY"))
orchestrator = create_orchestrator(use_mock=use_mock)
# Run the agent and stream events
response_parts = []
try:
async for event in orchestrator.run(message):
# Format event as markdown
event_md = event.to_markdown()
response_parts.append(event_md)
# If complete, show full response
if event.type == "complete":
yield event.message
else:
# Show progress
yield "\n\n".join(response_parts)
except Exception as e:
yield f"β **Error**: {str(e)}"
def create_demo() -> gr.Blocks:
"""
Create the Gradio demo interface.
Returns:
Configured Gradio Blocks interface
"""
with gr.Blocks(
title="DeepCritical - Drug Repurposing Research Agent",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown("""
# 𧬠DeepCritical
## AI-Powered Drug Repurposing Research Agent
Ask questions about potential drug repurposing opportunities.
The agent will search PubMed and the web, evaluate evidence, and provide recommendations.
**Example questions:**
- "What drugs could be repurposed for Alzheimer's disease?"
- "Is metformin effective for cancer treatment?"
- "What existing medications show promise for Long COVID?"
""")
chatbot = gr.ChatInterface(
fn=research_agent,
type="messages",
title="",
examples=[
"What drugs could be repurposed for Alzheimer's disease?",
"Is metformin effective for treating cancer?",
"What medications show promise for Long COVID treatment?",
"Can statins be repurposed for neurological conditions?",
],
retry_btn="π Retry",
undo_btn="β©οΈ Undo",
clear_btn="ποΈ Clear",
)
gr.Markdown("""
---
**Note**: This is a research tool and should not be used for medical decisions.
Always consult healthcare professionals for medical advice.
Built with π€ PydanticAI + π¬ PubMed + π¦ DuckDuckGo
""")
return demo
def main():
"""Run the Gradio app."""
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
)
if __name__ == "__main__":
main()
```
---
## 5. TDD Workflow
### Test File: `tests/unit/test_orchestrator.py`
```python
"""Unit tests for Orchestrator."""
import pytest
from unittest.mock import AsyncMock, MagicMock
from src.utils.models import (
Evidence,
Citation,
SearchResult,
JudgeAssessment,
AssessmentDetails,
OrchestratorConfig,
)
class TestOrchestrator:
"""Tests for Orchestrator."""
@pytest.fixture
def mock_search_handler(self):
"""Create a mock search handler."""
handler = AsyncMock()
handler.execute = AsyncMock(return_value=SearchResult(
query="test",
evidence=[
Evidence(
content="Test content",
citation=Citation(
source="pubmed",
title="Test Title",
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
date="2024-01-01",
),
),
],
sources_searched=["pubmed"],
total_found=1,
errors=[],
))
return handler
@pytest.fixture
def mock_judge_sufficient(self):
"""Create a mock judge that returns sufficient."""
handler = AsyncMock()
handler.assess = AsyncMock(return_value=JudgeAssessment(
details=AssessmentDetails(
mechanism_score=8,
mechanism_reasoning="Good mechanism",
clinical_evidence_score=7,
clinical_reasoning="Good clinical",
drug_candidates=["Drug A"],
key_findings=["Finding 1"],
),
sufficient=True,
confidence=0.85,
recommendation="synthesize",
next_search_queries=[],
reasoning="Evidence is sufficient",
))
return handler
@pytest.fixture
def mock_judge_insufficient(self):
"""Create a mock judge that returns insufficient."""
handler = AsyncMock()
handler.assess = AsyncMock(return_value=JudgeAssessment(
details=AssessmentDetails(
mechanism_score=4,
mechanism_reasoning="Weak mechanism",
clinical_evidence_score=3,
clinical_reasoning="Weak clinical",
drug_candidates=[],
key_findings=[],
),
sufficient=False,
confidence=0.3,
recommendation="continue",
next_search_queries=["more specific query"],
reasoning="Need more evidence",
))
return handler
@pytest.mark.asyncio
async def test_orchestrator_completes_with_sufficient_evidence(
self,
mock_search_handler,
mock_judge_sufficient,
):
"""Orchestrator should complete when evidence is sufficient."""
from src.orchestrator import Orchestrator
config = OrchestratorConfig(max_iterations=5)
orchestrator = Orchestrator(
search_handler=mock_search_handler,
judge_handler=mock_judge_sufficient,
config=config,
)
events = []
async for event in orchestrator.run("test query"):
events.append(event)
# Should have started, searched, judged, and completed
event_types = [e.type for e in events]
assert "started" in event_types
assert "searching" in event_types
assert "search_complete" in event_types
assert "judging" in event_types
assert "judge_complete" in event_types
assert "complete" in event_types
# Should only have 1 iteration
complete_event = [e for e in events if e.type == "complete"][0]
assert complete_event.iteration == 1
@pytest.mark.asyncio
async def test_orchestrator_loops_when_insufficient(
self,
mock_search_handler,
mock_judge_insufficient,
):
"""Orchestrator should loop when evidence is insufficient."""
from src.orchestrator import Orchestrator
config = OrchestratorConfig(max_iterations=3)
orchestrator = Orchestrator(
search_handler=mock_search_handler,
judge_handler=mock_judge_insufficient,
config=config,
)
events = []
async for event in orchestrator.run("test query"):
events.append(event)
# Should have looping events
event_types = [e.type for e in events]
assert event_types.count("looping") >= 2 # At least 2 loop events
# Should hit max iterations
complete_event = [e for e in events if e.type == "complete"][0]
assert complete_event.data.get("max_reached") is True
@pytest.mark.asyncio
async def test_orchestrator_respects_max_iterations(
self,
mock_search_handler,
mock_judge_insufficient,
):
"""Orchestrator should stop at max_iterations."""
from src.orchestrator import Orchestrator
config = OrchestratorConfig(max_iterations=2)
orchestrator = Orchestrator(
search_handler=mock_search_handler,
judge_handler=mock_judge_insufficient,
config=config,
)
events = []
async for event in orchestrator.run("test query"):
events.append(event)
# Should have exactly 2 iterations
max_iteration = max(e.iteration for e in events)
assert max_iteration == 2
@pytest.mark.asyncio
async def test_orchestrator_handles_search_error(self):
"""Orchestrator should handle search errors gracefully."""
from src.orchestrator import Orchestrator
mock_search = AsyncMock()
mock_search.execute = AsyncMock(side_effect=Exception("Search failed"))
mock_judge = AsyncMock()
mock_judge.assess = AsyncMock(return_value=JudgeAssessment(
details=AssessmentDetails(
mechanism_score=0,
mechanism_reasoning="N/A",
clinical_evidence_score=0,
clinical_reasoning="N/A",
drug_candidates=[],
key_findings=[],
),
sufficient=False,
confidence=0.0,
recommendation="continue",
next_search_queries=["retry query"],
reasoning="Search failed",
))
config = OrchestratorConfig(max_iterations=2)
orchestrator = Orchestrator(
search_handler=mock_search,
judge_handler=mock_judge,
config=config,
)
events = []
async for event in orchestrator.run("test query"):
events.append(event)
# Should have error events
event_types = [e.type for e in events]
assert "error" in event_types
@pytest.mark.asyncio
async def test_orchestrator_deduplicates_evidence(self, mock_judge_insufficient):
"""Orchestrator should deduplicate evidence by URL."""
from src.orchestrator import Orchestrator
# Search returns same evidence each time
duplicate_evidence = Evidence(
content="Duplicate content",
citation=Citation(
source="pubmed",
title="Same Title",
url="https://pubmed.ncbi.nlm.nih.gov/12345/", # Same URL
date="2024-01-01",
),
)
mock_search = AsyncMock()
mock_search.execute = AsyncMock(return_value=SearchResult(
query="test",
evidence=[duplicate_evidence],
sources_searched=["pubmed"],
total_found=1,
errors=[],
))
config = OrchestratorConfig(max_iterations=2)
orchestrator = Orchestrator(
search_handler=mock_search,
judge_handler=mock_judge_insufficient,
config=config,
)
events = []
async for event in orchestrator.run("test query"):
events.append(event)
# Second search_complete should show 0 new evidence
search_complete_events = [e for e in events if e.type == "search_complete"]
assert len(search_complete_events) == 2
# First iteration should have 1 new
assert search_complete_events[0].data["new_count"] == 1
# Second iteration should have 0 new (duplicate)
assert search_complete_events[1].data["new_count"] == 0
class TestAgentEvent:
"""Tests for AgentEvent."""
def test_to_markdown(self):
"""AgentEvent should format to markdown correctly."""
from src.utils.models import AgentEvent
event = AgentEvent(
type="searching",
message="Searching for: metformin alzheimer",
iteration=1,
)
md = event.to_markdown()
assert "π" in md
assert "SEARCHING" in md
assert "metformin alzheimer" in md
def test_complete_event_icon(self):
"""Complete event should have celebration icon."""
from src.utils.models import AgentEvent
event = AgentEvent(
type="complete",
message="Done!",
iteration=3,
)
md = event.to_markdown()
assert "π" in md
```
---
## 6. Dockerfile
```dockerfile
# Dockerfile for DeepCritical
FROM python:3.11-slim
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
git \
&& rm -rf /var/lib/apt/lists/*
# Install uv
RUN pip install uv
# Copy project files
COPY pyproject.toml .
COPY src/ src/
# Install dependencies
RUN uv pip install --system .
# Expose port
EXPOSE 7860
# Set environment variables
ENV GRADIO_SERVER_NAME=0.0.0.0
ENV GRADIO_SERVER_PORT=7860
# Run the app
CMD ["python", "-m", "src.app"]
```
---
## 7. HuggingFace Spaces Configuration
Create `README.md` header for HuggingFace Spaces:
```markdown
---
title: DeepCritical
emoji: π§¬
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.0.0
app_file: src/app.py
pinned: false
license: mit
---
# DeepCritical
AI-Powered Drug Repurposing Research Agent
```
---
## 8. Implementation Checklist
- [ ] Add `AgentEvent` and `OrchestratorConfig` models to `src/utils/models.py`
- [ ] Implement `src/orchestrator.py` with full Orchestrator class
- [ ] Implement `src/app.py` with Gradio interface
- [ ] Create `tests/unit/test_orchestrator.py` with all tests
- [ ] Create `Dockerfile` for deployment
- [ ] Update project `README.md` with usage instructions
- [ ] Run `uv run pytest tests/unit/test_orchestrator.py -v` β **ALL TESTS MUST PASS**
- [ ] Test locally: `uv run python -m src.app`
- [ ] Commit: `git commit -m "feat: phase 4 orchestrator and UI complete"`
---
## 9. Definition of Done
Phase 4 is **COMPLETE** when:
1. All unit tests pass: `uv run pytest tests/unit/test_orchestrator.py -v`
2. Orchestrator correctly loops Search -> Judge until sufficient
3. Max iterations limit is enforced
4. Graceful error handling throughout
5. Gradio UI streams events in real-time
6. Can run locally:
```bash
# Start the UI
uv run python -m src.app
# Open browser to http://localhost:7860
# Enter a question like "What drugs could be repurposed for Alzheimer's disease?"
# Watch the agent search, evaluate, and respond
```
7. Can run the full flow in Python:
```python
import asyncio
from src.orchestrator import Orchestrator
from src.tools.pubmed import PubMedTool
from src.tools.websearch import WebTool
from src.tools.search_handler import SearchHandler
from src.agent_factory.judges import MockJudgeHandler
from src.utils.models import OrchestratorConfig
async def test_full_flow():
# Create components
search_handler = SearchHandler([PubMedTool(), WebTool()])
judge_handler = MockJudgeHandler() # Use mock for testing
config = OrchestratorConfig(max_iterations=3)
# Create orchestrator
orchestrator = Orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
)
# Run and collect events
print("Starting agent...")
async for event in orchestrator.run("metformin alzheimer"):
print(event.to_markdown())
print("\nDone!")
asyncio.run(test_full_flow())
```
---
## 10. Deployment Verification
After deployment to HuggingFace Spaces:
1. **Visit the Space URL** and verify the UI loads
2. **Test with example queries**:
- "What drugs could be repurposed for Alzheimer's disease?"
- "Is metformin effective for cancer treatment?"
3. **Verify streaming** - events should appear in real-time
4. **Check error handling** - try an empty query, verify graceful handling
5. **Monitor logs** for any errors
---
## Project Complete! π
When Phase 4 is done, the DeepCritical MVP is complete:
- **Phase 1**: Foundation (uv, pytest, config) β
- **Phase 2**: Search Slice (PubMed, DuckDuckGo) β
- **Phase 3**: Judge Slice (PydanticAI, structured output) β
- **Phase 4**: Orchestrator + UI (Gradio, streaming) β
The agent can:
1. Accept a drug repurposing question
2. Search PubMed and the web for evidence
3. Evaluate evidence quality with an LLM
4. Loop until confident or max iterations
5. Synthesize a research-backed recommendation
6. Display real-time progress in a beautiful UI
|