Spaces:
Running
Running
File size: 8,397 Bytes
0efdc2f cfb473d 8625ded cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cd11dad cfb473d 0efdc2f cfb473d 0efdc2f 8625ded 0efdc2f cfb473d 0efdc2f 8625ded 0efdc2f cfb473d 8625ded 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d cd11dad 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d cd004e1 cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cd11dad cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 8625ded cfb473d 0efdc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
#!/usr/bin/env python3
"""
Demo: Full Stack DeepCritical Agent (Phases 1-8).
This script demonstrates the COMPLETE REAL drug repurposing research pipeline:
- Phase 2: REAL Search (PubMed + ClinicalTrials + bioRxiv)
- Phase 6: REAL Embeddings (sentence-transformers + ChromaDB)
- Phase 7: REAL Hypothesis (LLM mechanistic reasoning)
- Phase 3: REAL Judge (LLM evidence assessment)
- Phase 8: REAL Report (LLM structured scientific report)
NO MOCKS. NO FAKE DATA. REAL SCIENCE.
Usage:
uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3
Requires: OPENAI_API_KEY or ANTHROPIC_API_KEY
"""
import argparse
import asyncio
import os
import sys
from typing import Any
from src.utils.models import Evidence
def print_header(title: str) -> None:
"""Print a formatted section header."""
print(f"\n{'='*70}")
print(f" {title}")
print(f"{'='*70}\n")
def print_step(step: int, name: str) -> None:
"""Print a step indicator."""
print(f"\n[Step {step}] {name}")
print("-" * 50)
_MAX_DISPLAY_LEN = 600
def _print_truncated(text: str) -> None:
"""Print text, truncating if too long."""
if len(text) > _MAX_DISPLAY_LEN:
print(text[:_MAX_DISPLAY_LEN] + "\n... [truncated for display]")
else:
print(text)
async def _run_search_iteration(
query: str,
iteration: int,
evidence_store: dict[str, Any],
all_evidence: list[Evidence],
search_handler: Any,
embedding_service: Any,
) -> list[Evidence]:
"""Run a single search iteration with deduplication."""
search_queries = [query]
if evidence_store.get("hypotheses"):
for h in evidence_store["hypotheses"][-2:]:
search_queries.extend(h.search_suggestions[:1])
for q in search_queries[:2]:
result = await search_handler.execute(q, max_results_per_tool=5)
print(f" '{q}' -> {result.total_found} results")
new_unique = await embedding_service.deduplicate(result.evidence)
print(f" After dedup: {len(new_unique)} unique")
all_evidence.extend(new_unique)
evidence_store["current"] = all_evidence
evidence_store["iteration_count"] = iteration
return all_evidence
async def _handle_judge_step(
judge_handler: Any, query: str, all_evidence: list[Evidence], evidence_store: dict[str, Any]
) -> tuple[bool, str]:
"""Handle the judge assessment step. Returns (should_stop, next_query)."""
print("\n[Judge] Assessing evidence quality (REAL LLM)...")
assessment = await judge_handler.assess(query, all_evidence)
print(f" Mechanism Score: {assessment.details.mechanism_score}/10")
print(f" Clinical Score: {assessment.details.clinical_evidence_score}/10")
print(f" Confidence: {assessment.confidence:.0%}")
print(f" Recommendation: {assessment.recommendation.upper()}")
if assessment.recommendation == "synthesize":
print("\n[Judge] Evidence sufficient! Proceeding to report generation...")
evidence_store["last_assessment"] = assessment.details.model_dump()
return True, query
next_queries = assessment.next_search_queries[:2] if assessment.next_search_queries else []
if next_queries:
print(f"\n[Judge] Need more evidence. Next queries: {next_queries}")
return False, next_queries[0]
print(
"\n[Judge] Need more evidence but no suggested queries. " "Continuing with original query."
)
return False, query
async def run_full_demo(query: str, max_iterations: int) -> None:
"""Run the REAL full stack pipeline."""
print_header("DeepCritical Full Stack Demo (REAL)")
print(f"Query: {query}")
print(f"Max iterations: {max_iterations}")
print("Mode: REAL (All live API calls - no mocks)\n")
# Import real components
from src.agent_factory.judges import JudgeHandler
from src.agents.hypothesis_agent import HypothesisAgent
from src.agents.report_agent import ReportAgent
from src.services.embeddings import EmbeddingService
from src.tools.biorxiv import BioRxivTool
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.pubmed import PubMedTool
from src.tools.search_handler import SearchHandler
# Initialize REAL services
print("[Init] Loading embedding model...")
embedding_service = EmbeddingService()
search_handler = SearchHandler(
tools=[PubMedTool(), ClinicalTrialsTool(), BioRxivTool()], timeout=30.0
)
judge_handler = JudgeHandler()
# Shared evidence store
evidence_store: dict[str, Any] = {"current": [], "hypotheses": [], "iteration_count": 0}
all_evidence: list[Evidence] = []
for iteration in range(1, max_iterations + 1):
print_step(iteration, f"ITERATION {iteration}/{max_iterations}")
# Step 1: REAL Search
print("\n[Search] Querying PubMed + ClinicalTrials + bioRxiv (REAL API calls)...")
all_evidence = await _run_search_iteration(
query, iteration, evidence_store, all_evidence, search_handler, embedding_service
)
if not all_evidence:
print("\nNo evidence found. Try a different query.")
return
# Step 2: REAL Hypothesis generation (first iteration only)
if iteration == 1:
print("\n[Hypothesis] Generating mechanistic hypotheses (REAL LLM)...")
hypothesis_agent = HypothesisAgent(evidence_store, embedding_service)
hyp_response = await hypothesis_agent.run(query)
_print_truncated(hyp_response.messages[0].text)
# Step 3: REAL Judge
should_stop, query = await _handle_judge_step(
judge_handler, query, all_evidence, evidence_store
)
if should_stop:
break
# Step 4: REAL Report generation
print_step(iteration + 1, "REPORT GENERATION (REAL LLM)")
report_agent = ReportAgent(evidence_store, embedding_service)
report_response = await report_agent.run(query)
print("\n" + "=" * 70)
print(" FINAL RESEARCH REPORT")
print("=" * 70)
print(report_response.messages[0].text)
async def main() -> None:
"""Entry point."""
parser = argparse.ArgumentParser(
description="DeepCritical Full Stack Demo - REAL, No Mocks",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
This demo runs the COMPLETE pipeline with REAL API calls:
1. REAL search: Actual PubMed queries
2. REAL embeddings: Actual sentence-transformers model
3. REAL hypothesis: Actual LLM generating mechanistic chains
4. REAL judge: Actual LLM assessing evidence quality
5. REAL report: Actual LLM generating structured report
Examples:
uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3
uv run python examples/full_stack_demo/run_full.py "aspirin cancer prevention"
""",
)
parser.add_argument(
"query",
help="Research query (e.g., 'metformin Alzheimer's disease')",
)
parser.add_argument(
"-i",
"--iterations",
type=int,
default=2,
help="Max search iterations (default: 2)",
)
args = parser.parse_args()
if args.iterations < 1:
print("Error: iterations must be at least 1")
sys.exit(1)
# Fail fast: require API key
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
print("=" * 70)
print("ERROR: This demo requires a real LLM.")
print()
print("Set one of the following in your .env file:")
print(" OPENAI_API_KEY=sk-...")
print(" ANTHROPIC_API_KEY=sk-ant-...")
print()
print("This is a REAL demo. No mocks. No fake data.")
print("=" * 70)
sys.exit(1)
await run_full_demo(args.query, args.iterations)
print("\n" + "=" * 70)
print(" DeepCritical Full Stack Demo Complete!")
print(" ")
print(" Everything you just saw was REAL:")
print(" - Real PubMed + ClinicalTrials + bioRxiv searches")
print(" - Real embedding computations")
print(" - Real LLM reasoning")
print(" - Real scientific report")
print("=" * 70 + "\n")
if __name__ == "__main__":
asyncio.run(main())
|