Spaces:
Running
Running
File size: 4,392 Bytes
0efdc2f 32e3b61 cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f 32e3b61 cfb473d 32e3b61 8625ded 32e3b61 4732667 32e3b61 cfb473d 8625ded 0efdc2f cfb473d 4732667 cfb473d 4732667 cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 8625ded cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cd11dad 0efdc2f cfb473d 0efdc2f cfb473d 8625ded cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cd11dad 0efdc2f 8625ded 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d 0efdc2f cfb473d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# DeepCritical Examples
**NO MOCKS. NO FAKE DATA. REAL SCIENCE.**
These demos run the REAL drug repurposing research pipeline with actual API calls.
---
## Prerequisites
You MUST have API keys configured:
```bash
# Copy the example and add your keys
cp .env.example .env
# Required (pick one):
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
# Optional (higher PubMed rate limits):
NCBI_API_KEY=your-key
```
---
## Examples
### 1. Search Demo (No LLM Required)
Demonstrates REAL parallel search across PubMed, ClinicalTrials.gov, and bioRxiv/medRxiv.
```bash
uv run python examples/search_demo/run_search.py "metformin cancer"
```
**What's REAL:**
- Actual NCBI E-utilities API calls (PubMed)
- Actual ClinicalTrials.gov API calls
- Actual bioRxiv/medRxiv preprint API calls
- Real papers, real trials, real preprints
---
### 2. Embeddings Demo (No LLM Required)
Demonstrates REAL semantic search and deduplication.
```bash
uv run python examples/embeddings_demo/run_embeddings.py
```
**What's REAL:**
- Actual sentence-transformers model (all-MiniLM-L6-v2)
- Actual ChromaDB vector storage
- Real cosine similarity computations
- Real semantic deduplication
---
### 3. Orchestrator Demo (LLM Required)
Demonstrates the REAL search-judge-synthesize loop.
```bash
uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
uv run python examples/orchestrator_demo/run_agent.py "aspirin alzheimer" --iterations 5
```
**What's REAL:**
- Real PubMed + ClinicalTrials + bioRxiv searches
- Real LLM judge evaluating evidence quality
- Real iterative refinement based on LLM decisions
- Real research synthesis
---
### 4. Magentic Demo (OpenAI Required)
Demonstrates REAL multi-agent coordination using Microsoft Agent Framework.
```bash
# Requires OPENAI_API_KEY specifically
uv run python examples/orchestrator_demo/run_magentic.py "metformin cancer"
```
**What's REAL:**
- Real MagenticBuilder orchestration
- Real SearchAgent, JudgeAgent, HypothesisAgent, ReportAgent
- Real manager-based coordination
---
### 5. Hypothesis Demo (LLM Required)
Demonstrates REAL mechanistic hypothesis generation.
```bash
uv run python examples/hypothesis_demo/run_hypothesis.py "metformin Alzheimer's"
uv run python examples/hypothesis_demo/run_hypothesis.py "sildenafil heart failure"
```
**What's REAL:**
- Real PubMed + Web search first
- Real embedding-based deduplication
- Real LLM generating Drug -> Target -> Pathway -> Effect chains
- Real knowledge gap identification
---
### 6. Full-Stack Demo (LLM Required)
**THE COMPLETE PIPELINE** - All phases working together.
```bash
uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3
```
**What's REAL:**
1. Real PubMed + ClinicalTrials + bioRxiv evidence collection
2. Real embedding-based semantic deduplication
3. Real LLM mechanistic hypothesis generation
4. Real LLM evidence quality assessment
5. Real LLM structured scientific report generation
Output: Publication-quality research report with validated citations.
---
## API Key Requirements
| Example | LLM Required | Keys |
|---------|--------------|------|
| search_demo | No | Optional: `NCBI_API_KEY` |
| embeddings_demo | No | None |
| orchestrator_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` |
| run_magentic | Yes | `OPENAI_API_KEY` (Magentic requires OpenAI) |
| hypothesis_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` |
| full_stack_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` |
---
## Architecture
```text
User Query
|
v
[REAL Search] --> PubMed + ClinicalTrials + bioRxiv APIs
|
v
[REAL Embeddings] --> Actual sentence-transformers
|
v
[REAL Hypothesis] --> Actual LLM reasoning
|
v
[REAL Judge] --> Actual LLM assessment
|
+---> Need more? --> Loop back to Search
|
+---> Sufficient --> Continue
|
v
[REAL Report] --> Actual LLM synthesis
|
v
Publication-Quality Research Report
```
---
## Why No Mocks?
> "Authenticity is the feature."
Mocks belong in `tests/unit/`, not in demos. When you run these examples, you see:
- Real papers from real databases
- Real AI reasoning about real evidence
- Real scientific hypotheses
- Real research reports
This is what DeepCritical actually does. No fake data. No canned responses.
|