Spaces:
Running
Running
File size: 11,404 Bytes
10e234c 25c3a8b 4d87419 25c3a8b 10e234c 521d97d 10e234c 1922dbd e67c99f 4e2ccbf 25c3a8b f5747b1 25c3a8b 4d87419 25c3a8b 1922dbd 4d87419 25c3a8b 36983ae 25c3a8b e67c99f 36983ae 25c3a8b 4d87419 f5747b1 4d87419 f5747b1 4d87419 25c3a8b 1922dbd 25c3a8b 1922dbd 25c3a8b 1922dbd 4d87419 25c3a8b 1922dbd 4d87419 25c3a8b 4d87419 506a9c0 4d87419 1922dbd 506a9c0 4d87419 506a9c0 4d87419 506a9c0 1922dbd 506a9c0 4d87419 1922dbd 4d87419 25c3a8b 506a9c0 25c3a8b 4d87419 25c3a8b 10e234c 25c3a8b 10e234c 25c3a8b e67c99f 25c3a8b 1812a2a 25c3a8b 4d87419 25c3a8b 1922dbd d247864 4d87419 1922dbd 25c3a8b 10e234c 521d97d 25c3a8b 10e234c 25c3a8b 10e234c 25c3a8b 1812a2a 25c3a8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
"""Gradio UI for DeepCritical agent with MCP server support."""
import os
from collections.abc import AsyncGenerator
from typing import Any
import gradio as gr
from pydantic_ai.models.anthropic import AnthropicModel
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.anthropic import AnthropicProvider
from pydantic_ai.providers.openai import OpenAIProvider
from src.agent_factory.judges import JudgeHandler, MockJudgeHandler
from src.mcp_tools import (
analyze_hypothesis,
search_all_sources,
search_biorxiv,
search_clinical_trials,
search_pubmed,
)
from src.orchestrator_factory import create_orchestrator
from src.tools.biorxiv import BioRxivTool
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.pubmed import PubMedTool
from src.tools.search_handler import SearchHandler
from src.utils.config import settings
from src.utils.models import OrchestratorConfig
def configure_orchestrator(
use_mock: bool = False,
mode: str = "simple",
user_api_key: str | None = None,
api_provider: str = "openai",
) -> Any:
"""
Create an orchestrator instance.
Args:
use_mock: If True, use MockJudgeHandler (no API key needed)
mode: Orchestrator mode ("simple" or "magentic")
user_api_key: Optional user-provided API key (BYOK)
api_provider: API provider ("openai" or "anthropic")
Returns:
Configured Orchestrator instance
"""
# Create orchestrator config
config = OrchestratorConfig(
max_iterations=5,
max_results_per_tool=10,
)
# Create search tools
search_handler = SearchHandler(
tools=[PubMedTool(), ClinicalTrialsTool(), BioRxivTool()],
timeout=config.search_timeout,
)
# Create judge (mock or real)
judge_handler: JudgeHandler | MockJudgeHandler
if use_mock:
judge_handler = MockJudgeHandler()
else:
# Create model with user's API key if provided
model: AnthropicModel | OpenAIModel | None = None
if user_api_key:
if api_provider == "anthropic":
anthropic_provider = AnthropicProvider(api_key=user_api_key)
model = AnthropicModel(settings.anthropic_model, provider=anthropic_provider)
else:
openai_provider = OpenAIProvider(api_key=user_api_key)
model = OpenAIModel(settings.openai_model, provider=openai_provider)
judge_handler = JudgeHandler(model=model)
return create_orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
mode=mode, # type: ignore
)
async def research_agent(
message: str,
history: list[dict[str, Any]],
mode: str = "simple",
api_key: str = "",
api_provider: str = "openai",
) -> AsyncGenerator[str, None]:
"""
Gradio chat function that runs the research agent.
Args:
message: User's research question
history: Chat history (Gradio format)
mode: Orchestrator mode ("simple" or "magentic")
api_key: Optional user-provided API key (BYOK - Bring Your Own Key)
api_provider: API provider ("openai" or "anthropic")
Yields:
Markdown-formatted responses for streaming
"""
if not message.strip():
yield "Please enter a research question."
return
# Clean user-provided API key
user_api_key = api_key.strip() if api_key else None
# Decide whether to use real LLMs or mock based on mode and available keys
has_openai = bool(os.getenv("OPENAI_API_KEY"))
has_anthropic = bool(os.getenv("ANTHROPIC_API_KEY"))
has_user_key = bool(user_api_key)
if mode == "magentic":
# Magentic currently supports OpenAI only
use_mock = not (has_openai or (has_user_key and api_provider == "openai"))
else:
# Simple mode can work with either provider
use_mock = not (has_openai or has_anthropic or has_user_key)
# If magentic mode requested but no OpenAI key, fallback/warn
if mode == "magentic" and use_mock:
yield (
"β οΈ **Warning**: Magentic mode requires OpenAI API key. "
"Falling back to demo mode.\n\n"
)
mode = "simple"
# Inform user about their key being used
if has_user_key and not use_mock:
yield (
f"π **Using your {api_provider.upper()} API key** - "
"Your key is used only for this session and is never stored.\n\n"
)
# Warn users when running in demo mode (no LLM keys)
if use_mock:
yield (
"π¬ **Demo Mode**: Running with real biomedical searches but without "
"LLM-powered analysis.\n\n"
"**To unlock full AI analysis:**\n"
"- Enter your OpenAI or Anthropic API key below, OR\n"
"- Configure secrets in HuggingFace Space settings\n\n"
"---\n\n"
)
# Run the agent and stream events
response_parts: list[str] = []
try:
orchestrator = configure_orchestrator(
use_mock=use_mock,
mode=mode,
user_api_key=user_api_key,
api_provider=api_provider,
)
async for event in orchestrator.run(message):
# Format event as markdown
event_md = event.to_markdown()
response_parts.append(event_md)
# If complete, show full response
if event.type == "complete":
yield event.message
else:
# Show progress
yield "\n\n".join(response_parts)
except Exception as e:
yield f"β **Error**: {e!s}"
def create_demo() -> Any:
"""
Create the Gradio demo interface with MCP support.
Returns:
Configured Gradio Blocks interface with MCP server enabled
"""
with gr.Blocks(
title="DeepCritical - Drug Repurposing Research Agent",
) as demo:
gr.Markdown("""
# 𧬠DeepCritical
## AI-Powered Drug Repurposing Research Agent
Ask questions about potential drug repurposing opportunities.
The agent searches PubMed, ClinicalTrials.gov, and bioRxiv/medRxiv preprints.
**Example questions:**
- "What drugs could be repurposed for Alzheimer's disease?"
- "Is metformin effective for cancer treatment?"
- "What existing medications show promise for Long COVID?"
""")
# Main chat interface
gr.ChatInterface(
fn=research_agent,
title="",
examples=[
[
"What drugs could be repurposed for Alzheimer's disease?",
"simple",
"",
"openai",
],
[
"Is metformin effective for treating cancer?",
"simple",
"",
"openai",
],
[
"What medications show promise for Long COVID treatment?",
"simple",
"",
"openai",
],
[
"Can statins be repurposed for neurological conditions?",
"simple",
"",
"openai",
],
],
additional_inputs=[
gr.Radio(
choices=["simple", "magentic"],
value="simple",
label="Orchestrator Mode",
info="Simple: Linear (OpenAI/Anthropic) | Magentic: Multi-Agent (OpenAI)",
),
gr.Textbox(
label="π API Key (Optional - Bring Your Own Key)",
placeholder="sk-... or sk-ant-...",
type="password",
info="Enter your own API key for full AI analysis. Never stored.",
),
gr.Radio(
choices=["openai", "anthropic"],
value="openai",
label="API Provider",
info="Select the provider for your API key",
),
],
)
# MCP Tool Interfaces (exposed via MCP protocol)
gr.Markdown("---\n## MCP Tools (Also Available via Claude Desktop)")
with gr.Tab("PubMed Search"):
gr.Interface(
fn=search_pubmed,
inputs=[
gr.Textbox(label="Query", placeholder="metformin alzheimer"),
gr.Slider(1, 50, value=10, step=1, label="Max Results"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_pubmed",
)
with gr.Tab("Clinical Trials"):
gr.Interface(
fn=search_clinical_trials,
inputs=[
gr.Textbox(label="Query", placeholder="diabetes phase 3"),
gr.Slider(1, 50, value=10, step=1, label="Max Results"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_clinical_trials",
)
with gr.Tab("Preprints"):
gr.Interface(
fn=search_biorxiv,
inputs=[
gr.Textbox(label="Query", placeholder="long covid treatment"),
gr.Slider(1, 50, value=10, step=1, label="Max Results"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_biorxiv",
)
with gr.Tab("Search All"):
gr.Interface(
fn=search_all_sources,
inputs=[
gr.Textbox(label="Query", placeholder="metformin cancer"),
gr.Slider(1, 20, value=5, step=1, label="Max Per Source"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_all",
)
with gr.Tab("Analyze Hypothesis"):
gr.Interface(
fn=analyze_hypothesis,
inputs=[
gr.Textbox(label="Drug", placeholder="metformin"),
gr.Textbox(label="Condition", placeholder="Alzheimer's disease"),
gr.Textbox(
label="Evidence Summary",
placeholder="Studies show metformin reduces tau phosphorylation...",
lines=5,
),
],
outputs=gr.Markdown(label="Analysis Result"),
api_name="analyze_hypothesis",
)
gr.Markdown("""
---
**Note**: This is a research tool and should not be used for medical decisions.
Always consult healthcare professionals for medical advice.
Built with PydanticAI + PubMed, ClinicalTrials.gov & bioRxiv
**MCP Server**: Available at `/gradio_api/mcp/` for Claude Desktop integration
""")
return demo
def main() -> None:
"""Run the Gradio app with MCP server enabled."""
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
mcp_server=True,
)
if __name__ == "__main__":
main()
|