File size: 7,452 Bytes
645a051
1922dbd
 
c690006
1922dbd
 
 
 
 
 
 
 
 
 
 
 
645a051
 
 
 
 
 
 
1922dbd
d247864
645a051
1922dbd
645a051
 
1922dbd
645a051
a6398e4
 
1922dbd
 
645a051
d247864
645a051
 
1922dbd
 
 
 
 
645a051
1922dbd
645a051
 
 
 
 
 
 
 
0a480cb
645a051
 
1922dbd
645a051
1922dbd
c690006
 
3bacbf8
 
 
c690006
3bacbf8
c690006
3bacbf8
 
 
 
c690006
3bacbf8
645a051
 
 
 
 
 
 
 
 
 
f985224
645a051
 
d247864
c690006
1922dbd
 
 
c690006
1922dbd
3139749
1922dbd
 
645a051
1922dbd
 
 
 
 
 
 
c690006
 
645a051
 
 
 
c690006
645a051
 
c690006
 
 
 
 
 
 
 
 
645a051
c690006
645a051
 
 
 
 
c690006
645a051
 
 
 
 
 
 
 
 
 
 
 
 
c690006
1922dbd
 
 
c690006
 
 
 
 
645a051
1922dbd
 
 
 
 
 
 
c690006
 
645a051
c690006
645a051
 
c690006
 
645a051
c690006
 
 
 
 
645a051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c690006
 
 
645a051
c690006
 
645a051
c690006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""Magentic-based orchestrator using ChatAgent pattern."""

from collections.abc import AsyncGenerator
from typing import TYPE_CHECKING, Any

import structlog
from agent_framework import (
    MagenticAgentDeltaEvent,
    MagenticAgentMessageEvent,
    MagenticBuilder,
    MagenticFinalResultEvent,
    MagenticOrchestratorMessageEvent,
    WorkflowOutputEvent,
)
from agent_framework.openai import OpenAIChatClient

from src.agents.magentic_agents import (
    create_hypothesis_agent,
    create_judge_agent,
    create_report_agent,
    create_search_agent,
)
from src.agents.state import init_magentic_state
from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import AgentEvent

if TYPE_CHECKING:
    from src.services.embeddings import EmbeddingService

logger = structlog.get_logger()


class MagenticOrchestrator:
    """
    Magentic-based orchestrator using ChatAgent pattern.

    Each agent has an internal LLM that understands natural language
    instructions from the manager and can call tools appropriately.
    """

    def __init__(
        self,
        max_rounds: int = 10,
        chat_client: OpenAIChatClient | None = None,
    ) -> None:
        """Initialize orchestrator.

        Args:
            max_rounds: Maximum coordination rounds
            chat_client: Optional shared chat client for agents
        """
        if not settings.openai_api_key:
            raise ConfigurationError(
                "Magentic mode requires OPENAI_API_KEY. Set the key or use mode='simple'."
            )

        self._max_rounds = max_rounds
        self._chat_client = chat_client

    def _init_embedding_service(self) -> "EmbeddingService | None":
        """Initialize embedding service if available."""
        try:
            from src.services.embeddings import get_embedding_service

            service = get_embedding_service()
            logger.info("Embedding service enabled")
            return service
        except ImportError:
            logger.info("Embedding service not available (dependencies missing)")
        except Exception as e:
            logger.warning("Failed to initialize embedding service", error=str(e))
        return None

    def _build_workflow(self) -> Any:
        """Build the Magentic workflow with ChatAgent participants."""
        # Create agents with internal LLMs
        search_agent = create_search_agent(self._chat_client)
        judge_agent = create_judge_agent(self._chat_client)
        hypothesis_agent = create_hypothesis_agent(self._chat_client)
        report_agent = create_report_agent(self._chat_client)

        # Manager chat client (orchestrates the agents)
        manager_client = OpenAIChatClient(
            model_id=settings.openai_model,  # Use configured model
            api_key=settings.openai_api_key,
        )

        return (
            MagenticBuilder()
            .participants(
                searcher=search_agent,
                hypothesizer=hypothesis_agent,
                judge=judge_agent,
                reporter=report_agent,
            )
            .with_standard_manager(
                chat_client=manager_client,
                max_round_count=self._max_rounds,
                max_stall_count=3,
                max_reset_count=2,
            )
            .build()
        )

    async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
        """
        Run the Magentic workflow.

        Args:
            query: User's research question

        Yields:
            AgentEvent objects for real-time UI updates
        """
        logger.info("Starting Magentic orchestrator", query=query)

        yield AgentEvent(
            type="started",
            message=f"Starting research (Magentic mode): {query}",
            iteration=0,
        )

        # Initialize context state
        embedding_service = self._init_embedding_service()
        init_magentic_state(embedding_service)

        workflow = self._build_workflow()

        task = f"""Research drug repurposing opportunities for: {query}

Workflow:
1. SearchAgent: Find evidence from PubMed, ClinicalTrials.gov, and bioRxiv
2. HypothesisAgent: Generate mechanistic hypotheses (Drug -> Target -> Pathway -> Effect)
3. JudgeAgent: Evaluate if evidence is sufficient
4. If insufficient -> SearchAgent refines search based on gaps
5. If sufficient -> ReportAgent synthesizes final report

Focus on:
- Identifying specific molecular targets
- Understanding mechanism of action
- Finding clinical evidence supporting hypotheses

The final output should be a structured research report."""

        iteration = 0
        try:
            async for event in workflow.run_stream(task):
                agent_event = self._process_event(event, iteration)
                if agent_event:
                    if isinstance(event, MagenticAgentMessageEvent):
                        iteration += 1
                    yield agent_event

        except Exception as e:
            logger.error("Magentic workflow failed", error=str(e))
            yield AgentEvent(
                type="error",
                message=f"Workflow error: {e!s}",
                iteration=iteration,
            )

    def _process_event(self, event: Any, iteration: int) -> AgentEvent | None:
        """Process workflow event into AgentEvent."""
        if isinstance(event, MagenticOrchestratorMessageEvent):
            text = event.message.text if event.message else ""
            if text:
                return AgentEvent(
                    type="judging",
                    message=f"Manager ({event.kind}): {text[:200]}...",
                    iteration=iteration,
                )

        elif isinstance(event, MagenticAgentMessageEvent):
            agent_name = event.agent_id or "unknown"
            text = event.message.text if event.message else ""

            event_type = "judging"
            if "search" in agent_name.lower():
                event_type = "search_complete"
            elif "judge" in agent_name.lower():
                event_type = "judge_complete"
            elif "hypothes" in agent_name.lower():
                event_type = "hypothesizing"
            elif "report" in agent_name.lower():
                event_type = "synthesizing"

            return AgentEvent(
                type=event_type,  # type: ignore[arg-type]
                message=f"{agent_name}: {text[:200]}...",
                iteration=iteration + 1,
            )

        elif isinstance(event, MagenticFinalResultEvent):
            text = event.message.text if event.message else "No result"
            return AgentEvent(
                type="complete",
                message=text,
                data={"iterations": iteration},
                iteration=iteration,
            )

        elif isinstance(event, MagenticAgentDeltaEvent):
            if event.text:
                return AgentEvent(
                    type="streaming",
                    message=event.text,
                    data={"agent_id": event.agent_id},
                    iteration=iteration,
                )

        elif isinstance(event, WorkflowOutputEvent):
            if event.data:
                return AgentEvent(
                    type="complete",
                    message=str(event.data),
                    iteration=iteration,
                )

        return None