Spaces:
Running
Running
File size: 5,405 Bytes
25c3a8b 1922dbd e67c99f 4e2ccbf 25c3a8b 1922dbd 25c3a8b 1922dbd 25c3a8b 36983ae 25c3a8b e67c99f 36983ae 25c3a8b 1922dbd 25c3a8b 1922dbd 25c3a8b 1922dbd 25c3a8b 1922dbd 25c3a8b 506a9c0 1922dbd 506a9c0 1922dbd 506a9c0 1922dbd 25c3a8b 506a9c0 25c3a8b 506a9c0 25c3a8b e67c99f 25c3a8b 1922dbd d247864 1922dbd 25c3a8b e67c99f 25c3a8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
"""Gradio UI for DeepCritical agent."""
import os
from collections.abc import AsyncGenerator
from typing import Any
import gradio as gr
from src.agent_factory.judges import JudgeHandler, MockJudgeHandler
from src.orchestrator_factory import create_orchestrator
from src.tools.biorxiv import BioRxivTool
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.pubmed import PubMedTool
from src.tools.search_handler import SearchHandler
from src.utils.models import OrchestratorConfig
def configure_orchestrator(use_mock: bool = False, mode: str = "simple") -> Any:
"""
Create an orchestrator instance.
Args:
use_mock: If True, use MockJudgeHandler (no API key needed)
mode: Orchestrator mode ("simple" or "magentic")
Returns:
Configured Orchestrator instance
"""
# Create orchestrator config
config = OrchestratorConfig(
max_iterations=5,
max_results_per_tool=10,
)
# Create search tools
search_handler = SearchHandler(
tools=[PubMedTool(), ClinicalTrialsTool(), BioRxivTool()],
timeout=config.search_timeout,
)
# Create judge (mock or real)
judge_handler: JudgeHandler | MockJudgeHandler
if use_mock:
judge_handler = MockJudgeHandler()
else:
judge_handler = JudgeHandler()
return create_orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
mode=mode, # type: ignore
)
async def research_agent(
message: str,
history: list[dict[str, Any]],
mode: str = "simple",
) -> AsyncGenerator[str, None]:
"""
Gradio chat function that runs the research agent.
Args:
message: User's research question
history: Chat history (Gradio format)
mode: Orchestrator mode ("simple" or "magentic")
Yields:
Markdown-formatted responses for streaming
"""
if not message.strip():
yield "Please enter a research question."
return
# Decide whether to use real LLMs or mock based on mode and available keys
has_openai = bool(os.getenv("OPENAI_API_KEY"))
has_anthropic = bool(os.getenv("ANTHROPIC_API_KEY"))
if mode == "magentic":
# Magentic currently supports OpenAI only
use_mock = not has_openai
else:
# Simple mode can work with either provider
use_mock = not (has_openai or has_anthropic)
# If magentic mode requested but no OpenAI key, fallback/warn
if mode == "magentic" and use_mock:
yield (
"β οΈ **Warning**: Magentic mode requires OpenAI API key. "
"Falling back to Mock Simple mode."
)
mode = "simple"
# Run the agent and stream events
response_parts: list[str] = []
try:
orchestrator = configure_orchestrator(use_mock=use_mock, mode=mode)
async for event in orchestrator.run(message):
# Format event as markdown
event_md = event.to_markdown()
response_parts.append(event_md)
# If complete, show full response
if event.type == "complete":
yield event.message
else:
# Show progress
yield "\n\n".join(response_parts)
except Exception as e:
yield f"β **Error**: {e!s}"
def create_demo() -> Any:
"""
Create the Gradio demo interface.
Returns:
Configured Gradio Blocks interface
"""
with gr.Blocks(
title="DeepCritical - Drug Repurposing Research Agent",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown("""
# 𧬠DeepCritical
## AI-Powered Drug Repurposing Research Agent
Ask questions about potential drug repurposing opportunities.
The agent searches PubMed, ClinicalTrials.gov, and bioRxiv/medRxiv preprints.
**Example questions:**
- "What drugs could be repurposed for Alzheimer's disease?"
- "Is metformin effective for cancer treatment?"
- "What existing medications show promise for Long COVID?"
""")
gr.ChatInterface(
fn=research_agent,
type="messages",
title="",
examples=[
"What drugs could be repurposed for Alzheimer's disease?",
"Is metformin effective for treating cancer?",
"What medications show promise for Long COVID treatment?",
"Can statins be repurposed for neurological conditions?",
],
additional_inputs=[
gr.Radio(
choices=["simple", "magentic"],
value="simple",
label="Orchestrator Mode",
info="Simple: Linear (OpenAI/Anthropic) | Magentic: Multi-Agent (OpenAI)",
)
],
)
gr.Markdown("""
---
**Note**: This is a research tool and should not be used for medical decisions.
Always consult healthcare professionals for medical advice.
Built with π€ PydanticAI + π¬ PubMed, ClinicalTrials.gov & bioRxiv
""")
return demo
def main() -> None:
"""Run the Gradio app."""
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
)
if __name__ == "__main__":
main()
|