DeepCritical / tests /integration /test_research_flows.py
Joseph Pollack
adds the initial iterative and deep research workflows
731a241 unverified
raw
history blame
22.4 kB
"""Integration tests for research flows.
These tests require API keys and may make real API calls.
Marked with @pytest.mark.integration to skip in unit test runs.
"""
import pytest
from src.agent_factory.agents import (
create_deep_flow,
create_iterative_flow,
create_planner_agent,
)
from src.orchestrator.graph_orchestrator import create_graph_orchestrator
from src.utils.config import settings
@pytest.mark.integration
class TestPlannerAgentIntegration:
"""Integration tests for PlannerAgent with real API calls."""
@pytest.mark.asyncio
async def test_planner_agent_creates_plan(self):
"""PlannerAgent should create a valid report plan with real API."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
planner = create_planner_agent()
result = await planner.run("What are the main features of Python programming language?")
assert result.report_title
assert len(result.report_outline) > 0
assert result.report_outline[0].title
assert result.report_outline[0].key_question
@pytest.mark.asyncio
async def test_planner_agent_includes_background_context(self):
"""PlannerAgent should include background context in plan."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
planner = create_planner_agent()
result = await planner.run("Explain quantum computing basics")
assert result.background_context
assert len(result.background_context) > 50 # Should have substantial context
@pytest.mark.integration
class TestIterativeResearchFlowIntegration:
"""Integration tests for IterativeResearchFlow with real API calls."""
@pytest.mark.asyncio
async def test_iterative_flow_completes_simple_query(self):
"""IterativeResearchFlow should complete a simple research query."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_iterative_flow(max_iterations=2, max_time_minutes=2)
result = await flow.run(
query="What is the capital of France?",
output_length="A short paragraph",
)
assert isinstance(result, str)
assert len(result) > 0
# Should mention Paris
assert "paris" in result.lower() or "france" in result.lower()
@pytest.mark.asyncio
async def test_iterative_flow_respects_max_iterations(self):
"""IterativeResearchFlow should respect max_iterations limit."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_iterative_flow(max_iterations=1, max_time_minutes=5)
result = await flow.run(query="What are the main features of Python?")
assert isinstance(result, str)
# Should complete within 1 iteration (or hit max)
assert flow.iteration <= 1
@pytest.mark.asyncio
async def test_iterative_flow_with_background_context(self):
"""IterativeResearchFlow should use background context."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_iterative_flow(max_iterations=2, max_time_minutes=2)
result = await flow.run(
query="What is machine learning?",
background_context="Machine learning is a subset of artificial intelligence.",
)
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.integration
class TestDeepResearchFlowIntegration:
"""Integration tests for DeepResearchFlow with real API calls."""
@pytest.mark.asyncio
async def test_deep_flow_creates_multi_section_report(self):
"""DeepResearchFlow should create a report with multiple sections."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1, # Keep it short for testing
max_time_minutes=3,
)
result = await flow.run("What are the main features of Python programming language?")
assert isinstance(result, str)
assert len(result) > 100 # Should have substantial content
# Should have section structure
assert "#" in result or "##" in result
@pytest.mark.asyncio
async def test_deep_flow_uses_long_writer(self):
"""DeepResearchFlow should use long writer by default."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=True,
)
result = await flow.run("Explain the basics of quantum computing")
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.asyncio
async def test_deep_flow_uses_proofreader_when_specified(self):
"""DeepResearchFlow should use proofreader when use_long_writer=False."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=False,
)
result = await flow.run("What is artificial intelligence?")
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.integration
class TestGraphOrchestratorIntegration:
"""Integration tests for GraphOrchestrator with real API calls."""
@pytest.mark.asyncio
async def test_graph_orchestrator_iterative_mode(self):
"""GraphOrchestrator should run in iterative mode."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
orchestrator = create_graph_orchestrator(
mode="iterative",
max_iterations=1,
max_time_minutes=2,
)
events = []
async for event in orchestrator.run("What is Python?"):
events.append(event)
assert len(events) > 0
event_types = [e.type for e in events]
assert "started" in event_types
assert "complete" in event_types
@pytest.mark.asyncio
async def test_graph_orchestrator_deep_mode(self):
"""GraphOrchestrator should run in deep mode."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
orchestrator = create_graph_orchestrator(
mode="deep",
max_iterations=1,
max_time_minutes=3,
)
events = []
async for event in orchestrator.run("What are the main features of Python?"):
events.append(event)
assert len(events) > 0
event_types = [e.type for e in events]
assert "started" in event_types
assert "complete" in event_types
@pytest.mark.asyncio
async def test_graph_orchestrator_auto_mode(self):
"""GraphOrchestrator should auto-detect research mode."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
orchestrator = create_graph_orchestrator(
mode="auto",
max_iterations=1,
max_time_minutes=2,
)
events = []
async for event in orchestrator.run("What is Python?"):
events.append(event)
assert len(events) > 0
# Should complete successfully regardless of mode
event_types = [e.type for e in events]
assert "complete" in event_types
@pytest.mark.integration
class TestGraphOrchestrationIntegration:
"""Integration tests for graph-based orchestration with real API calls."""
@pytest.mark.asyncio
async def test_iterative_flow_with_graph_execution(self):
"""IterativeResearchFlow should work with graph execution enabled."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_iterative_flow(
max_iterations=1,
max_time_minutes=2,
use_graph=True,
)
result = await flow.run(query="What is the capital of France?")
assert isinstance(result, str)
assert len(result) > 0
# Should mention Paris
assert "paris" in result.lower() or "france" in result.lower()
@pytest.mark.asyncio
async def test_deep_flow_with_graph_execution(self):
"""DeepResearchFlow should work with graph execution enabled."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_graph=True,
)
result = await flow.run("What are the main features of Python programming language?")
assert isinstance(result, str)
assert len(result) > 100 # Should have substantial content
@pytest.mark.asyncio
async def test_graph_orchestrator_with_graph_execution(self):
"""GraphOrchestrator should work with graph execution enabled."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
orchestrator = create_graph_orchestrator(
mode="iterative",
max_iterations=1,
max_time_minutes=2,
use_graph=True,
)
events = []
async for event in orchestrator.run("What is Python?"):
events.append(event)
assert len(events) > 0
event_types = [e.type for e in events]
assert "started" in event_types
assert "complete" in event_types
# Extract final report from complete event
complete_events = [e for e in events if e.type == "complete"]
assert len(complete_events) > 0
final_report = complete_events[0].message
assert isinstance(final_report, str)
assert len(final_report) > 0
@pytest.mark.asyncio
async def test_graph_orchestrator_parallel_execution(self):
"""GraphOrchestrator should support parallel execution in deep mode."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
orchestrator = create_graph_orchestrator(
mode="deep",
max_iterations=1,
max_time_minutes=3,
use_graph=True,
)
events = []
async for event in orchestrator.run("What are the main features of Python?"):
events.append(event)
assert len(events) > 0
event_types = [e.type for e in events]
assert "started" in event_types
assert "complete" in event_types
@pytest.mark.asyncio
async def test_graph_vs_chain_execution_comparison(self):
"""Both graph and chain execution should produce similar results."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
query = "What is the capital of France?"
# Run with graph execution
flow_graph = create_iterative_flow(
max_iterations=1,
max_time_minutes=2,
use_graph=True,
)
result_graph = await flow_graph.run(query=query)
# Run with agent chains
flow_chains = create_iterative_flow(
max_iterations=1,
max_time_minutes=2,
use_graph=False,
)
result_chains = await flow_chains.run(query=query)
# Both should produce valid results
assert isinstance(result_graph, str)
assert isinstance(result_chains, str)
assert len(result_graph) > 0
assert len(result_chains) > 0
# Both should mention the answer (Paris)
assert "paris" in result_graph.lower() or "france" in result_graph.lower()
assert "paris" in result_chains.lower() or "france" in result_chains.lower()
@pytest.mark.integration
class TestReportSynthesisIntegration:
"""Integration tests for report synthesis with writer agents."""
@pytest.mark.asyncio
async def test_iterative_flow_generates_report(self):
"""IterativeResearchFlow should generate a report with writer agent."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_iterative_flow(max_iterations=1, max_time_minutes=2)
result = await flow.run(
query="What is the capital of France?",
output_length="A short paragraph",
)
assert isinstance(result, str)
assert len(result) > 0
# Should be a formatted report
assert "paris" in result.lower() or "france" in result.lower()
# Should have some structure (markdown headers or content)
assert len(result) > 50
@pytest.mark.asyncio
async def test_iterative_flow_includes_citations(self):
"""IterativeResearchFlow should include citations in the report."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_iterative_flow(max_iterations=1, max_time_minutes=2)
result = await flow.run(
query="What is machine learning?",
output_length="A short paragraph",
)
assert isinstance(result, str)
# Should have some form of citations or references
# (either [1], [2] format or References section)
# Note: Citations may not always be present depending on findings
# This is a soft check - just verify report was generated
assert len(result) > 0
@pytest.mark.asyncio
async def test_iterative_flow_handles_empty_findings(self):
"""IterativeResearchFlow should handle empty findings gracefully."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_iterative_flow(max_iterations=1, max_time_minutes=1)
# Use a query that might not return findings quickly
result = await flow.run(
query="Test query with no findings",
output_length="A short paragraph",
)
# Should still return a report (even if minimal)
assert isinstance(result, str)
# Writer agent should handle empty findings with fallback
@pytest.mark.asyncio
async def test_deep_flow_with_long_writer(self):
"""DeepResearchFlow should use long writer to create sections."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=True,
)
result = await flow.run("What are the main features of Python programming language?")
assert isinstance(result, str)
assert len(result) > 100 # Should have substantial content
# Should have section structure (table of contents or sections)
has_structure = (
"##" in result
or "#" in result
or "table of contents" in result.lower()
or "introduction" in result.lower()
)
# Long writer should create structured report
assert has_structure or len(result) > 200
@pytest.mark.asyncio
async def test_deep_flow_creates_sections(self):
"""DeepResearchFlow should create multiple sections in the report."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=True,
)
result = await flow.run("Explain the basics of quantum computing")
assert isinstance(result, str)
# Should have multiple sections (indicated by headers)
# Should have at least some structure
assert len(result) > 100
@pytest.mark.asyncio
async def test_deep_flow_aggregates_references(self):
"""DeepResearchFlow should aggregate references from all sections."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=True,
)
result = await flow.run("What are the main features of Python programming language?")
assert isinstance(result, str)
# Long writer should aggregate references at the end
# Check for references section or citation format
# Note: References may not always be present
# Just verify report structure is correct
assert len(result) > 100
@pytest.mark.asyncio
async def test_deep_flow_with_proofreader(self):
"""DeepResearchFlow should use proofreader to finalize report."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=False, # Use proofreader instead
)
result = await flow.run("What is artificial intelligence?")
assert isinstance(result, str)
assert len(result) > 0
# Proofreader should create polished report
# Should have some structure
assert len(result) > 50
@pytest.mark.asyncio
async def test_proofreader_removes_duplicates(self):
"""Proofreader should remove duplicate content from report."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=False,
)
result = await flow.run("Explain machine learning basics")
assert isinstance(result, str)
# Proofreader should create polished, non-repetitive content
# This is a soft check - just verify report was generated
assert len(result) > 0
@pytest.mark.asyncio
async def test_proofreader_adds_summary(self):
"""Proofreader should add a summary to the report."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
flow = create_deep_flow(
max_iterations=1,
max_time_minutes=3,
use_long_writer=False,
)
result = await flow.run("What is Python programming language?")
assert isinstance(result, str)
# Proofreader should add summary/outline
# Check for summary indicators
# Note: Summary format may vary
# Just verify report was generated
assert len(result) > 0
@pytest.mark.asyncio
async def test_graph_orchestrator_uses_writer_agents(self):
"""GraphOrchestrator should use writer agents in iterative mode."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
orchestrator = create_graph_orchestrator(
mode="iterative",
max_iterations=1,
max_time_minutes=2,
use_graph=False, # Use agent chains to test writer integration
)
events = []
async for event in orchestrator.run("What is the capital of France?"):
events.append(event)
assert len(events) > 0
event_types = [e.type for e in events]
assert "started" in event_types
assert "complete" in event_types
# Extract final report from complete event
complete_events = [e for e in events if e.type == "complete"]
assert len(complete_events) > 0
final_report = complete_events[0].message
assert isinstance(final_report, str)
assert len(final_report) > 0
# Should have content from writer agent
assert "paris" in final_report.lower() or "france" in final_report.lower()
@pytest.mark.asyncio
async def test_graph_orchestrator_uses_long_writer_in_deep_mode(self):
"""GraphOrchestrator should use long writer in deep mode."""
if not settings.has_openai_key and not settings.has_anthropic_key:
pytest.skip("No OpenAI or Anthropic API key available")
orchestrator = create_graph_orchestrator(
mode="deep",
max_iterations=1,
max_time_minutes=3,
use_graph=False, # Use agent chains
)
events = []
async for event in orchestrator.run("What are the main features of Python?"):
events.append(event)
assert len(events) > 0
event_types = [e.type for e in events]
assert "started" in event_types
assert "complete" in event_types
# Extract final report
complete_events = [e for e in events if e.type == "complete"]
assert len(complete_events) > 0
final_report = complete_events[0].message
assert isinstance(final_report, str)
assert len(final_report) > 0
# Should have structured content from long writer
assert len(final_report) > 100