Spaces:
Running
docs: enhance Phase 13 Modal integration documentation
Browse files- Updated the documentation to reflect the new `StatisticalAnalyzer` service, which decouples Modal execution from the `agent_framework`, ensuring no dependencies for the simple orchestrator.
- Revised the flow diagrams to illustrate the integration of the `StatisticalAnalyzer` and its role in the analysis phase.
- Added detailed sections on the implementation, configuration updates, and integration points for the new service.
- Included unit and integration tests for the `StatisticalAnalyzer`, ensuring functionality without the `agent_framework`.
- Updated demo scripts to showcase the new analysis capabilities and verification of Modal sandbox execution.
Files modified:
- docs/implementation/13_phase_modal_integration.md
- src/services/statistical_analyzer.py
- src/orchestrator.py
- src/agents/analysis_agent.py
- src/mcp_tools.py
- examples/modal_demo/run_analysis.py
- examples/modal_demo/verify_sandbox.py
- tests/unit/services/test_statistical_analyzer.py
- tests/integration/test_modal.py
|
@@ -25,21 +25,66 @@ Mario already implemented `src/tools/code_execution.py`:
|
|
| 25 |
|
| 26 |
### What's Missing
|
| 27 |
|
| 28 |
-
```
|
| 29 |
Current Flow:
|
| 30 |
User Query β Orchestrator β Search β Judge β [Report] β Done
|
| 31 |
|
| 32 |
With Modal:
|
| 33 |
-
User Query β Orchestrator β Search β Judge β [
|
| 34 |
-
|
| 35 |
-
|
| 36 |
```
|
| 37 |
|
| 38 |
*The AnalysisAgent exists but is NOT called by either orchestrator.
|
| 39 |
|
| 40 |
---
|
| 41 |
|
| 42 |
-
## 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
### Modal Innovation Award: $2,500
|
| 45 |
|
|
@@ -57,24 +102,19 @@ code = """
|
|
| 57 |
import pandas as pd
|
| 58 |
import scipy.stats as stats
|
| 59 |
|
| 60 |
-
# Analyze extracted metrics from evidence
|
| 61 |
data = pd.DataFrame({
|
| 62 |
'study': ['Study1', 'Study2', 'Study3'],
|
| 63 |
'effect_size': [0.45, 0.52, 0.38],
|
| 64 |
'sample_size': [120, 85, 200]
|
| 65 |
})
|
| 66 |
|
| 67 |
-
# Meta-analysis statistics
|
| 68 |
weighted_mean = (data['effect_size'] * data['sample_size']).sum() / data['sample_size'].sum()
|
| 69 |
t_stat, p_value = stats.ttest_1samp(data['effect_size'], 0)
|
| 70 |
|
| 71 |
print(f"Weighted Effect Size: {weighted_mean:.3f}")
|
| 72 |
print(f"P-value: {p_value:.4f}")
|
| 73 |
|
| 74 |
-
if p_value < 0.05
|
| 75 |
-
result = "SUPPORTED"
|
| 76 |
-
else:
|
| 77 |
-
result = "INCONCLUSIVE"
|
| 78 |
"""
|
| 79 |
|
| 80 |
# Executed SAFELY in Modal sandbox
|
|
@@ -84,19 +124,19 @@ output = executor.execute(code) # Runs in isolated container!
|
|
| 84 |
|
| 85 |
---
|
| 86 |
|
| 87 |
-
##
|
| 88 |
|
| 89 |
-
###
|
| 90 |
|
| 91 |
```toml
|
| 92 |
-
# pyproject.toml -
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
```
|
| 98 |
|
| 99 |
-
###
|
| 100 |
|
| 101 |
```bash
|
| 102 |
# .env
|
|
@@ -104,20 +144,21 @@ MODAL_TOKEN_ID=your-token-id
|
|
| 104 |
MODAL_TOKEN_SECRET=your-token-secret
|
| 105 |
```
|
| 106 |
|
| 107 |
-
###
|
| 108 |
|
| 109 |
| Integration Point | File | Change Required |
|
| 110 |
|-------------------|------|-----------------|
|
| 111 |
-
|
|
| 112 |
-
|
|
| 113 |
-
| Gradio UI | `src/app.py` | Add toggle for analysis mode |
|
| 114 |
| Config | `src/utils/config.py` | Add `enable_modal_analysis` setting |
|
|
|
|
|
|
|
| 115 |
|
| 116 |
---
|
| 117 |
|
| 118 |
-
##
|
| 119 |
|
| 120 |
-
###
|
| 121 |
|
| 122 |
```python
|
| 123 |
class Settings(BaseSettings):
|
|
@@ -134,7 +175,267 @@ class Settings(BaseSettings):
|
|
| 134 |
return bool(self.modal_token_id and self.modal_token_secret)
|
| 135 |
```
|
| 136 |
|
| 137 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
```python
|
| 140 |
"""Main orchestrator with optional Modal analysis."""
|
|
@@ -160,29 +461,20 @@ class Orchestrator:
|
|
| 160 |
self.history: list[dict[str, Any]] = []
|
| 161 |
self._enable_analysis = enable_analysis and settings.modal_available
|
| 162 |
|
| 163 |
-
# Lazy-load analysis
|
| 164 |
-
self.
|
| 165 |
-
self._analysis_agent: Any = None
|
| 166 |
|
| 167 |
-
|
| 168 |
-
"""Lazy initialization of
|
| 169 |
-
if self._hypothesis_agent is None:
|
| 170 |
-
from src.agents.hypothesis_agent import HypothesisAgent
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
if self._analysis_agent is None:
|
| 180 |
-
from src.agents.analysis_agent import AnalysisAgent
|
| 181 |
-
|
| 182 |
-
self._analysis_agent = AnalysisAgent(
|
| 183 |
-
evidence_store={"current": [], "hypotheses": []},
|
| 184 |
-
)
|
| 185 |
-
return self._analysis_agent
|
| 186 |
|
| 187 |
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
|
| 188 |
"""Main orchestration loop with optional Modal analysis."""
|
|
@@ -198,24 +490,19 @@ class Orchestrator:
|
|
| 198 |
)
|
| 199 |
|
| 200 |
try:
|
| 201 |
-
|
| 202 |
-
hypothesis_agent = await self._get_hypothesis_agent()
|
| 203 |
-
hypothesis_agent._evidence_store["current"] = all_evidence
|
| 204 |
-
|
| 205 |
-
hypothesis_result = await hypothesis_agent.run(query)
|
| 206 |
-
hypotheses = hypothesis_agent._evidence_store.get("hypotheses", [])
|
| 207 |
-
|
| 208 |
-
# Run Modal analysis
|
| 209 |
-
analysis_agent = await self._get_analysis_agent()
|
| 210 |
-
analysis_agent._evidence_store["current"] = all_evidence
|
| 211 |
-
analysis_agent._evidence_store["hypotheses"] = hypotheses
|
| 212 |
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
yield AgentEvent(
|
| 216 |
type="analysis_complete",
|
| 217 |
-
message="
|
| 218 |
-
data=
|
| 219 |
iteration=iteration,
|
| 220 |
)
|
| 221 |
|
|
@@ -230,9 +517,159 @@ class Orchestrator:
|
|
| 230 |
# Continue to synthesis...
|
| 231 |
```
|
| 232 |
|
| 233 |
-
### 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
-
Add
|
| 236 |
|
| 237 |
```python
|
| 238 |
async def analyze_hypothesis(
|
|
@@ -253,175 +690,67 @@ async def analyze_hypothesis(
|
|
| 253 |
Returns:
|
| 254 |
Analysis result with verdict (SUPPORTED/REFUTED/INCONCLUSIVE) and statistics
|
| 255 |
"""
|
| 256 |
-
from src.
|
| 257 |
-
from src.agent_factory.judges import get_model
|
| 258 |
-
from pydantic_ai import Agent
|
| 259 |
-
|
| 260 |
-
# Check Modal availability
|
| 261 |
from src.utils.config import settings
|
|
|
|
|
|
|
| 262 |
if not settings.modal_available:
|
| 263 |
return "Error: Modal credentials not configured. Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET."
|
| 264 |
|
| 265 |
-
#
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
Evidence:
|
| 280 |
-
{evidence_summary}
|
| 281 |
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
-
|
| 285 |
-
code_result = await code_agent.run(prompt)
|
| 286 |
-
generated_code = code_result.output
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
import asyncio
|
| 291 |
-
loop = asyncio.get_running_loop()
|
| 292 |
-
from functools import partial
|
| 293 |
-
execution = await loop.run_in_executor(
|
| 294 |
-
None, partial(executor.execute, generated_code, timeout=60)
|
| 295 |
-
)
|
| 296 |
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
# Format output
|
| 301 |
-
return f"""## Statistical Analysis: {drug} for {condition}
|
| 302 |
|
| 303 |
### Execution Output
|
| 304 |
```
|
| 305 |
-
{
|
| 306 |
```
|
| 307 |
|
| 308 |
### Generated Code
|
| 309 |
```python
|
| 310 |
-
{
|
| 311 |
```
|
| 312 |
|
| 313 |
**Executed in Modal Sandbox** - Isolated, secure, reproducible.
|
| 314 |
"""
|
| 315 |
-
|
| 316 |
-
except CodeExecutionError as e:
|
| 317 |
-
return f"## Analysis Error\n\n{e}"
|
| 318 |
-
except Exception as e:
|
| 319 |
-
return f"## Unexpected Error\n\n{e}"
|
| 320 |
```
|
| 321 |
|
| 322 |
-
###
|
| 323 |
-
|
| 324 |
-
```python
|
| 325 |
-
#!/usr/bin/env python3
|
| 326 |
-
"""Demo: Modal-powered statistical analysis of drug repurposing evidence.
|
| 327 |
-
|
| 328 |
-
This script demonstrates:
|
| 329 |
-
1. Gathering evidence from PubMed
|
| 330 |
-
2. Generating analysis code with LLM
|
| 331 |
-
3. Executing in Modal sandbox
|
| 332 |
-
4. Returning statistical insights
|
| 333 |
-
|
| 334 |
-
Usage:
|
| 335 |
-
export OPENAI_API_KEY=...
|
| 336 |
-
export MODAL_TOKEN_ID=...
|
| 337 |
-
export MODAL_TOKEN_SECRET=...
|
| 338 |
-
uv run python examples/modal_demo/run_analysis.py "metformin alzheimer"
|
| 339 |
-
"""
|
| 340 |
-
|
| 341 |
-
import argparse
|
| 342 |
-
import asyncio
|
| 343 |
-
import os
|
| 344 |
-
import sys
|
| 345 |
-
|
| 346 |
-
from src.agents.analysis_agent import AnalysisAgent
|
| 347 |
-
from src.agents.hypothesis_agent import HypothesisAgent
|
| 348 |
-
from src.tools.pubmed import PubMedTool
|
| 349 |
-
from src.utils.config import settings
|
| 350 |
|
| 351 |
-
|
| 352 |
-
async def main() -> None:
|
| 353 |
-
"""Run the Modal analysis demo."""
|
| 354 |
-
parser = argparse.ArgumentParser(description="Modal Analysis Demo")
|
| 355 |
-
parser.add_argument("query", help="Research query (e.g., 'metformin alzheimer')")
|
| 356 |
-
args = parser.parse_args()
|
| 357 |
-
|
| 358 |
-
# Check credentials
|
| 359 |
-
if not settings.modal_available:
|
| 360 |
-
print("Error: Modal credentials not configured.")
|
| 361 |
-
print("Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env")
|
| 362 |
-
sys.exit(1)
|
| 363 |
-
|
| 364 |
-
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
|
| 365 |
-
print("Error: No LLM API key found.")
|
| 366 |
-
sys.exit(1)
|
| 367 |
-
|
| 368 |
-
print(f"\n{'='*60}")
|
| 369 |
-
print("DeepCritical Modal Analysis Demo")
|
| 370 |
-
print(f"Query: {args.query}")
|
| 371 |
-
print(f"{'='*60}\n")
|
| 372 |
-
|
| 373 |
-
# Step 1: Gather Evidence
|
| 374 |
-
print("Step 1: Gathering evidence from PubMed...")
|
| 375 |
-
pubmed = PubMedTool()
|
| 376 |
-
evidence = await pubmed.search(args.query, max_results=5)
|
| 377 |
-
print(f" Found {len(evidence)} papers\n")
|
| 378 |
-
|
| 379 |
-
# Step 2: Generate Hypotheses
|
| 380 |
-
print("Step 2: Generating mechanistic hypotheses...")
|
| 381 |
-
evidence_store: dict = {"current": evidence, "hypotheses": []}
|
| 382 |
-
hypothesis_agent = HypothesisAgent(evidence_store=evidence_store)
|
| 383 |
-
await hypothesis_agent.run(args.query)
|
| 384 |
-
hypotheses = evidence_store.get("hypotheses", [])
|
| 385 |
-
print(f" Generated {len(hypotheses)} hypotheses\n")
|
| 386 |
-
|
| 387 |
-
if hypotheses:
|
| 388 |
-
print(f" Primary: {hypotheses[0].drug} β {hypotheses[0].target}")
|
| 389 |
-
|
| 390 |
-
# Step 3: Run Modal Analysis
|
| 391 |
-
print("\nStep 3: Running statistical analysis in Modal sandbox...")
|
| 392 |
-
print(" (This executes LLM-generated code in an isolated container)\n")
|
| 393 |
-
|
| 394 |
-
analysis_agent = AnalysisAgent(evidence_store=evidence_store)
|
| 395 |
-
result = await analysis_agent.run(args.query)
|
| 396 |
-
|
| 397 |
-
# Step 4: Display Results
|
| 398 |
-
print("\n" + "="*60)
|
| 399 |
-
print("ANALYSIS RESULTS")
|
| 400 |
-
print("="*60)
|
| 401 |
-
|
| 402 |
-
if result.messages:
|
| 403 |
-
print(result.messages[0].text)
|
| 404 |
-
|
| 405 |
-
analysis = evidence_store.get("analysis", {})
|
| 406 |
-
if analysis:
|
| 407 |
-
print(f"\nVerdict: {analysis.get('verdict', 'N/A')}")
|
| 408 |
-
print(f"Confidence: {analysis.get('confidence', 0):.0%}")
|
| 409 |
-
|
| 410 |
-
print("\n[Demo Complete - Code was executed in Modal, not locally]")
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
if __name__ == "__main__":
|
| 414 |
-
asyncio.run(main())
|
| 415 |
-
```
|
| 416 |
-
|
| 417 |
-
### 4.5 Verification Script (`examples/modal_demo/verify_sandbox.py`)
|
| 418 |
|
| 419 |
```python
|
| 420 |
#!/usr/bin/env python3
|
| 421 |
"""Verify that Modal sandbox is properly isolated.
|
| 422 |
|
| 423 |
This script proves to judges that code runs in Modal, not locally.
|
| 424 |
-
|
| 425 |
|
| 426 |
Usage:
|
| 427 |
uv run python examples/modal_demo/verify_sandbox.py
|
|
@@ -438,26 +767,23 @@ async def main() -> None:
|
|
| 438 |
"""Verify Modal sandbox isolation."""
|
| 439 |
if not settings.modal_available:
|
| 440 |
print("Error: Modal credentials not configured.")
|
|
|
|
| 441 |
return
|
| 442 |
|
| 443 |
executor = get_code_executor()
|
| 444 |
loop = asyncio.get_running_loop()
|
| 445 |
|
| 446 |
-
print("="*60)
|
| 447 |
print("Modal Sandbox Isolation Verification")
|
| 448 |
-
print("="*60 + "\n")
|
| 449 |
|
| 450 |
-
# Test 1:
|
| 451 |
print("Test 1: Check hostname (should NOT be your machine)")
|
| 452 |
-
code1 = ""
|
| 453 |
-
import socket
|
| 454 |
-
print(f"Hostname: {socket.gethostname()}")
|
| 455 |
-
"""
|
| 456 |
result1 = await loop.run_in_executor(None, partial(executor.execute, code1))
|
| 457 |
-
print(f"
|
| 458 |
-
print(f" (Your local hostname would be different)\n")
|
| 459 |
|
| 460 |
-
# Test 2:
|
| 461 |
print("Test 2: Verify scientific libraries")
|
| 462 |
code2 = """
|
| 463 |
import pandas as pd
|
|
@@ -470,45 +796,108 @@ print(f"scipy: {scipy.__version__}")
|
|
| 470 |
result2 = await loop.run_in_executor(None, partial(executor.execute, code2))
|
| 471 |
print(f" {result2['stdout'].strip()}\n")
|
| 472 |
|
| 473 |
-
# Test 3:
|
| 474 |
-
print("Test 3: Verify network isolation
|
| 475 |
code3 = """
|
| 476 |
import urllib.request
|
| 477 |
try:
|
| 478 |
urllib.request.urlopen("https://google.com", timeout=2)
|
| 479 |
-
print("Network: ALLOWED (unexpected)")
|
| 480 |
-
except Exception
|
| 481 |
-
print(
|
| 482 |
"""
|
| 483 |
result3 = await loop.run_in_executor(None, partial(executor.execute, code3))
|
| 484 |
print(f" {result3['stdout'].strip()}\n")
|
| 485 |
|
| 486 |
-
# Test 4:
|
| 487 |
-
print("Test 4: Execute
|
| 488 |
code4 = """
|
| 489 |
import pandas as pd
|
| 490 |
import scipy.stats as stats
|
| 491 |
|
| 492 |
-
data = pd.DataFrame({
|
| 493 |
-
|
| 494 |
-
'effect': [0.42, 0.38, 0.51],
|
| 495 |
-
'n': [100, 150, 80]
|
| 496 |
-
})
|
| 497 |
-
|
| 498 |
-
mean_effect = data['effect'].mean()
|
| 499 |
-
sem = data['effect'].sem()
|
| 500 |
t_stat, p_val = stats.ttest_1samp(data['effect'], 0)
|
| 501 |
|
| 502 |
-
print(f"Mean Effect: {
|
| 503 |
-
print(f"
|
| 504 |
print(f"Verdict: {'SUPPORTED' if p_val < 0.05 else 'INCONCLUSIVE'}")
|
| 505 |
"""
|
| 506 |
result4 = await loop.run_in_executor(None, partial(executor.execute, code4))
|
| 507 |
print(f" {result4['stdout'].strip()}\n")
|
| 508 |
|
| 509 |
-
print("="*60)
|
| 510 |
print("All tests complete - Modal sandbox verified!")
|
| 511 |
-
print("="*60)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
|
| 513 |
|
| 514 |
if __name__ == "__main__":
|
|
@@ -517,18 +906,23 @@ if __name__ == "__main__":
|
|
| 517 |
|
| 518 |
---
|
| 519 |
|
| 520 |
-
##
|
| 521 |
|
| 522 |
-
###
|
| 523 |
|
| 524 |
```python
|
| 525 |
-
"""Unit tests for
|
| 526 |
|
| 527 |
from unittest.mock import AsyncMock, MagicMock, patch
|
| 528 |
|
| 529 |
import pytest
|
| 530 |
|
| 531 |
-
from src.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
|
| 533 |
|
| 534 |
@pytest.fixture
|
|
@@ -536,7 +930,7 @@ def sample_evidence() -> list[Evidence]:
|
|
| 536 |
"""Sample evidence for testing."""
|
| 537 |
return [
|
| 538 |
Evidence(
|
| 539 |
-
content="Metformin shows effect size of 0.45
|
| 540 |
citation=Citation(
|
| 541 |
source="pubmed",
|
| 542 |
title="Metformin Study",
|
|
@@ -549,128 +943,83 @@ def sample_evidence() -> list[Evidence]:
|
|
| 549 |
]
|
| 550 |
|
| 551 |
|
| 552 |
-
class
|
| 553 |
-
"""Tests for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
|
| 555 |
@pytest.mark.asyncio
|
| 556 |
-
async def
|
| 557 |
self, sample_evidence: list[Evidence]
|
| 558 |
) -> None:
|
| 559 |
-
"""
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
evidence_store = {
|
| 563 |
-
"current": sample_evidence,
|
| 564 |
-
"hypotheses": [
|
| 565 |
-
MagicMock(
|
| 566 |
-
drug="metformin",
|
| 567 |
-
target="AMPK",
|
| 568 |
-
pathway="autophagy",
|
| 569 |
-
effect="neuroprotection",
|
| 570 |
-
confidence=0.8,
|
| 571 |
-
)
|
| 572 |
-
],
|
| 573 |
-
}
|
| 574 |
|
| 575 |
-
with patch("
|
| 576 |
-
patch("
|
| 577 |
|
| 578 |
-
# Mock LLM
|
| 579 |
-
mock_agent = AsyncMock(
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
))
|
| 583 |
|
| 584 |
-
# Mock Modal
|
| 585 |
mock_executor.return_value.execute.return_value = {
|
| 586 |
-
"stdout": "SUPPORTED",
|
| 587 |
"stderr": "",
|
| 588 |
"success": True,
|
| 589 |
-
"error": None,
|
| 590 |
}
|
| 591 |
|
| 592 |
-
|
| 593 |
-
agent._agent = mock_agent
|
| 594 |
-
|
| 595 |
-
result = await agent.run("metformin alzheimer")
|
| 596 |
-
|
| 597 |
-
assert result.messages[0].text is not None
|
| 598 |
-
assert "analysis" in evidence_store
|
| 599 |
-
|
| 600 |
|
| 601 |
-
|
| 602 |
-
|
| 603 |
|
| 604 |
-
def
|
| 605 |
-
"""
|
| 606 |
-
|
| 607 |
-
|
|
|
|
| 608 |
|
| 609 |
-
with patch.dict(os.environ, {}, clear=True):
|
| 610 |
-
from src.tools.code_execution import ModalCodeExecutor
|
| 611 |
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
assert executor.modal_token_id is None
|
| 615 |
|
| 616 |
-
def
|
| 617 |
-
"""
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
class TestOrchestratorWithAnalysis:
|
| 628 |
-
"""Tests for orchestrator with Modal analysis enabled."""
|
| 629 |
-
|
| 630 |
-
@pytest.mark.asyncio
|
| 631 |
-
async def test_orchestrator_calls_analysis_when_enabled(self) -> None:
|
| 632 |
-
"""Orchestrator should call AnalysisAgent when enabled and Modal available."""
|
| 633 |
-
from src.orchestrator import Orchestrator
|
| 634 |
-
from src.utils.models import OrchestratorConfig
|
| 635 |
-
|
| 636 |
-
with patch("src.orchestrator.settings") as mock_settings:
|
| 637 |
-
mock_settings.modal_available = True
|
| 638 |
-
|
| 639 |
-
mock_search = AsyncMock()
|
| 640 |
-
mock_search.search.return_value = MagicMock(
|
| 641 |
-
evidence=[],
|
| 642 |
-
errors=[],
|
| 643 |
-
)
|
| 644 |
-
|
| 645 |
-
mock_judge = AsyncMock()
|
| 646 |
-
mock_judge.assess.return_value = MagicMock(
|
| 647 |
-
sufficient=True,
|
| 648 |
-
recommendation="synthesize",
|
| 649 |
-
next_search_queries=[],
|
| 650 |
)
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 658 |
)
|
| 659 |
-
|
| 660 |
-
# Collect events
|
| 661 |
-
events = []
|
| 662 |
-
async for event in orchestrator.run("test query"):
|
| 663 |
-
events.append(event)
|
| 664 |
-
|
| 665 |
-
# Should have analyzing event if Modal enabled
|
| 666 |
-
event_types = [e.type for e in events]
|
| 667 |
-
# Note: This test verifies the flow, actual Modal call is mocked
|
| 668 |
```
|
| 669 |
|
| 670 |
-
###
|
| 671 |
|
| 672 |
```python
|
| 673 |
-
"""Integration tests for Modal
|
| 674 |
|
| 675 |
import pytest
|
| 676 |
|
|
@@ -678,27 +1027,20 @@ from src.utils.config import settings
|
|
| 678 |
|
| 679 |
|
| 680 |
@pytest.mark.integration
|
| 681 |
-
@pytest.mark.skipif(
|
| 682 |
-
not settings.modal_available,
|
| 683 |
-
reason="Modal credentials not configured"
|
| 684 |
-
)
|
| 685 |
class TestModalIntegration:
|
| 686 |
-
"""Integration tests
|
| 687 |
|
| 688 |
@pytest.mark.asyncio
|
| 689 |
-
async def
|
| 690 |
-
"""
|
| 691 |
import asyncio
|
| 692 |
from functools import partial
|
| 693 |
|
| 694 |
from src.tools.code_execution import get_code_executor
|
| 695 |
|
| 696 |
executor = get_code_executor()
|
| 697 |
-
code = ""
|
| 698 |
-
import pandas as pd
|
| 699 |
-
result = pd.DataFrame({'a': [1,2,3]})['a'].sum()
|
| 700 |
-
print(f"Sum: {result}")
|
| 701 |
-
"""
|
| 702 |
|
| 703 |
loop = asyncio.get_running_loop()
|
| 704 |
result = await loop.run_in_executor(
|
|
@@ -706,174 +1048,148 @@ print(f"Sum: {result}")
|
|
| 706 |
)
|
| 707 |
|
| 708 |
assert result["success"]
|
| 709 |
-
assert "
|
| 710 |
|
| 711 |
@pytest.mark.asyncio
|
| 712 |
-
async def
|
| 713 |
-
"""
|
| 714 |
-
import
|
| 715 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 716 |
|
| 717 |
-
|
|
|
|
| 718 |
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
import urllib.request
|
| 722 |
-
try:
|
| 723 |
-
urllib.request.urlopen("https://google.com", timeout=2)
|
| 724 |
-
print("NETWORK_ALLOWED")
|
| 725 |
-
except Exception:
|
| 726 |
-
print("NETWORK_BLOCKED")
|
| 727 |
-
"""
|
| 728 |
-
|
| 729 |
-
loop = asyncio.get_running_loop()
|
| 730 |
-
result = await loop.run_in_executor(
|
| 731 |
-
None, partial(executor.execute, code, timeout=30)
|
| 732 |
-
)
|
| 733 |
-
|
| 734 |
-
assert "NETWORK_BLOCKED" in result["stdout"]
|
| 735 |
```
|
| 736 |
|
| 737 |
---
|
| 738 |
|
| 739 |
-
##
|
| 740 |
|
| 741 |
```bash
|
| 742 |
-
# 1.
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
# Or via modal CLI
|
| 747 |
-
modal setup
|
| 748 |
|
| 749 |
-
# 2. Run unit tests
|
| 750 |
-
uv run pytest tests/unit/
|
| 751 |
|
| 752 |
-
# 3. Run verification script (
|
| 753 |
uv run python examples/modal_demo/verify_sandbox.py
|
| 754 |
|
| 755 |
-
# 4. Run
|
| 756 |
uv run python examples/modal_demo/run_analysis.py "metformin alzheimer"
|
| 757 |
|
| 758 |
-
# 5. Run integration tests
|
| 759 |
uv run pytest tests/integration/test_modal.py -v -m integration
|
| 760 |
|
| 761 |
-
# 6.
|
| 762 |
make check
|
| 763 |
```
|
| 764 |
|
| 765 |
---
|
| 766 |
|
| 767 |
-
##
|
| 768 |
|
| 769 |
Phase 13 is **COMPLETE** when:
|
| 770 |
|
| 771 |
-
- [ ] `src/
|
| 772 |
-
- [ ] `src/
|
| 773 |
-
- [ ] `src/
|
| 774 |
-
- [ ] `
|
| 775 |
-
- [ ] `
|
| 776 |
-
- [ ]
|
| 777 |
-
- [ ]
|
| 778 |
-
- [ ]
|
| 779 |
-
- [ ]
|
| 780 |
-
- [ ]
|
| 781 |
-
|
| 782 |
-
---
|
| 783 |
-
|
| 784 |
-
## 8. Demo Script for Judges
|
| 785 |
-
|
| 786 |
-
### Show Modal Innovation
|
| 787 |
-
|
| 788 |
-
1. **Run verification script** (proves sandbox):
|
| 789 |
-
```bash
|
| 790 |
-
uv run python examples/modal_demo/verify_sandbox.py
|
| 791 |
-
```
|
| 792 |
-
- Shows hostname is NOT local machine
|
| 793 |
-
- Shows scientific libraries available
|
| 794 |
-
- Shows network is BLOCKED (security)
|
| 795 |
-
- Shows real statistics execution
|
| 796 |
-
|
| 797 |
-
2. **Run analysis demo**:
|
| 798 |
-
```bash
|
| 799 |
-
uv run python examples/modal_demo/run_analysis.py "metformin cancer"
|
| 800 |
-
```
|
| 801 |
-
- Shows evidence gathering
|
| 802 |
-
- Shows hypothesis generation
|
| 803 |
-
- Shows code execution in Modal
|
| 804 |
-
- Shows statistical verdict
|
| 805 |
-
|
| 806 |
-
3. **Show the key differentiator**:
|
| 807 |
-
> "LLM-generated code executes in an isolated Modal container. This is enterprise-grade safety for AI-powered scientific computing."
|
| 808 |
|
| 809 |
---
|
| 810 |
|
| 811 |
-
## 9.
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 819 |
|
| 820 |
-
**
|
| 821 |
-
- With Modal Integration: **Eligible for $2,500 Modal Innovation Award**
|
| 822 |
|
| 823 |
---
|
| 824 |
|
| 825 |
-
## 10. Files
|
| 826 |
|
| 827 |
| File | Action | Purpose |
|
| 828 |
|------|--------|---------|
|
|
|
|
| 829 |
| `src/utils/config.py` | MODIFY | Add `enable_modal_analysis` |
|
| 830 |
-
| `src/orchestrator.py` | MODIFY |
|
| 831 |
-
| `src/
|
|
|
|
|
|
|
| 832 |
| `examples/modal_demo/run_analysis.py` | CREATE | Demo script |
|
| 833 |
-
| `
|
| 834 |
-
| `tests/unit/tools/test_modal_integration.py` | CREATE | Unit tests |
|
| 835 |
| `tests/integration/test_modal.py` | CREATE | Integration tests |
|
| 836 |
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
## 11. Architecture After Phase 13
|
| 840 |
-
|
| 841 |
-
```
|
| 842 |
-
User Query
|
| 843 |
-
β
|
| 844 |
-
Orchestrator
|
| 845 |
-
β
|
| 846 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 847 |
-
β Search Phase β
|
| 848 |
-
β PubMedTool β ClinicalTrialsTool β BioRxivTool β
|
| 849 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 850 |
-
β
|
| 851 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 852 |
-
β Judge Phase β
|
| 853 |
-
β JudgeHandler β "sufficient" β continue to synthesis β
|
| 854 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 855 |
-
β (if enable_modal_analysis=True)
|
| 856 |
-
βββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½οΏ½ββββββββββββββββββββββββ
|
| 857 |
-
β Analysis Phase (NEW) β
|
| 858 |
-
β HypothesisAgent β Generate mechanistic hypotheses β
|
| 859 |
-
β β β
|
| 860 |
-
β AnalysisAgent β Generate Python code β
|
| 861 |
-
β β β
|
| 862 |
-
β ββββββββββββββββββββββββββββββββββββββββββββββββ β
|
| 863 |
-
β β Modal Sandbox Container β β
|
| 864 |
-
β β - pandas, numpy, scipy, sklearn β β
|
| 865 |
-
β β - Network BLOCKED β β
|
| 866 |
-
β β - Filesystem ISOLATED β β
|
| 867 |
-
β β - Execute β Return stdout β β
|
| 868 |
-
β ββββββββββββββββββββββββββββββββββββββββββββββββ β
|
| 869 |
-
β β β
|
| 870 |
-
β AnalysisResult β SUPPORTED/REFUTED/INCONCLUSIVE β
|
| 871 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 872 |
-
β
|
| 873 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 874 |
-
β Report Phase β
|
| 875 |
-
β ReportAgent β Structured scientific report β
|
| 876 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 877 |
-
```
|
| 878 |
-
|
| 879 |
-
**This is the Modal-powered analytics stack.**
|
|
|
|
| 25 |
|
| 26 |
### What's Missing
|
| 27 |
|
| 28 |
+
```text
|
| 29 |
Current Flow:
|
| 30 |
User Query β Orchestrator β Search β Judge β [Report] β Done
|
| 31 |
|
| 32 |
With Modal:
|
| 33 |
+
User Query β Orchestrator β Search β Judge β [Analysis*] β Report β Done
|
| 34 |
+
β
|
| 35 |
+
Modal Sandbox Execution
|
| 36 |
```
|
| 37 |
|
| 38 |
*The AnalysisAgent exists but is NOT called by either orchestrator.
|
| 39 |
|
| 40 |
---
|
| 41 |
|
| 42 |
+
## 2. Critical Dependency Analysis
|
| 43 |
+
|
| 44 |
+
### The Problem (Senior Feedback)
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
# src/agents/analysis_agent.py - Line 8
|
| 48 |
+
from agent_framework import (
|
| 49 |
+
AgentRunResponse,
|
| 50 |
+
BaseAgent,
|
| 51 |
+
...
|
| 52 |
+
)
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
```toml
|
| 56 |
+
# pyproject.toml - agent-framework is OPTIONAL
|
| 57 |
+
[project.optional-dependencies]
|
| 58 |
+
magentic = [
|
| 59 |
+
"agent-framework-core",
|
| 60 |
+
]
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
**If we import `AnalysisAgent` in the simple orchestrator without the `magentic` extra installed, the app CRASHES on startup.**
|
| 64 |
+
|
| 65 |
+
### The SOLID Solution
|
| 66 |
+
|
| 67 |
+
**Single Responsibility Principle**: Decouple Modal execution logic from `agent_framework`.
|
| 68 |
+
|
| 69 |
+
```text
|
| 70 |
+
BEFORE (Coupled):
|
| 71 |
+
AnalysisAgent (requires agent_framework)
|
| 72 |
+
β
|
| 73 |
+
ModalCodeExecutor
|
| 74 |
+
|
| 75 |
+
AFTER (Decoupled):
|
| 76 |
+
StatisticalAnalyzer (no agent_framework dependency) β Simple mode uses this
|
| 77 |
+
β
|
| 78 |
+
ModalCodeExecutor
|
| 79 |
+
β
|
| 80 |
+
AnalysisAgent (wraps StatisticalAnalyzer) β Magentic mode uses this
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
**Key insight**: Create `src/services/statistical_analyzer.py` with ZERO agent_framework imports.
|
| 84 |
+
|
| 85 |
+
---
|
| 86 |
+
|
| 87 |
+
## 3. Prize Opportunity
|
| 88 |
|
| 89 |
### Modal Innovation Award: $2,500
|
| 90 |
|
|
|
|
| 102 |
import pandas as pd
|
| 103 |
import scipy.stats as stats
|
| 104 |
|
|
|
|
| 105 |
data = pd.DataFrame({
|
| 106 |
'study': ['Study1', 'Study2', 'Study3'],
|
| 107 |
'effect_size': [0.45, 0.52, 0.38],
|
| 108 |
'sample_size': [120, 85, 200]
|
| 109 |
})
|
| 110 |
|
|
|
|
| 111 |
weighted_mean = (data['effect_size'] * data['sample_size']).sum() / data['sample_size'].sum()
|
| 112 |
t_stat, p_value = stats.ttest_1samp(data['effect_size'], 0)
|
| 113 |
|
| 114 |
print(f"Weighted Effect Size: {weighted_mean:.3f}")
|
| 115 |
print(f"P-value: {p_value:.4f}")
|
| 116 |
|
| 117 |
+
result = "SUPPORTED" if p_value < 0.05 else "INCONCLUSIVE"
|
|
|
|
|
|
|
|
|
|
| 118 |
"""
|
| 119 |
|
| 120 |
# Executed SAFELY in Modal sandbox
|
|
|
|
| 124 |
|
| 125 |
---
|
| 126 |
|
| 127 |
+
## 4. Technical Specification
|
| 128 |
|
| 129 |
+
### 4.1 Dependencies
|
| 130 |
|
| 131 |
```toml
|
| 132 |
+
# pyproject.toml - NO CHANGES to dependencies
|
| 133 |
+
# StatisticalAnalyzer uses only:
|
| 134 |
+
# - pydantic-ai (already in main deps)
|
| 135 |
+
# - modal (already in main deps)
|
| 136 |
+
# - src.tools.code_execution (no agent_framework)
|
| 137 |
```
|
| 138 |
|
| 139 |
+
### 4.2 Environment Variables
|
| 140 |
|
| 141 |
```bash
|
| 142 |
# .env
|
|
|
|
| 144 |
MODAL_TOKEN_SECRET=your-token-secret
|
| 145 |
```
|
| 146 |
|
| 147 |
+
### 4.3 Integration Points
|
| 148 |
|
| 149 |
| Integration Point | File | Change Required |
|
| 150 |
|-------------------|------|-----------------|
|
| 151 |
+
| New Service | `src/services/statistical_analyzer.py` | CREATE (no agent_framework) |
|
| 152 |
+
| Simple Orchestrator | `src/orchestrator.py` | Use `StatisticalAnalyzer` |
|
|
|
|
| 153 |
| Config | `src/utils/config.py` | Add `enable_modal_analysis` setting |
|
| 154 |
+
| AnalysisAgent | `src/agents/analysis_agent.py` | Refactor to wrap `StatisticalAnalyzer` |
|
| 155 |
+
| MCP Tool | `src/mcp_tools.py` | Add `analyze_hypothesis` tool |
|
| 156 |
|
| 157 |
---
|
| 158 |
|
| 159 |
+
## 5. Implementation
|
| 160 |
|
| 161 |
+
### 5.1 Configuration Update (`src/utils/config.py`)
|
| 162 |
|
| 163 |
```python
|
| 164 |
class Settings(BaseSettings):
|
|
|
|
| 175 |
return bool(self.modal_token_id and self.modal_token_secret)
|
| 176 |
```
|
| 177 |
|
| 178 |
+
### 5.2 StatisticalAnalyzer Service (`src/services/statistical_analyzer.py`)
|
| 179 |
+
|
| 180 |
+
**This is the key fix - NO agent_framework imports.**
|
| 181 |
+
|
| 182 |
+
```python
|
| 183 |
+
"""Statistical analysis service using Modal code execution.
|
| 184 |
+
|
| 185 |
+
This module provides Modal-based statistical analysis WITHOUT depending on
|
| 186 |
+
agent_framework. This allows it to be used in the simple orchestrator mode
|
| 187 |
+
without requiring the magentic optional dependency.
|
| 188 |
+
|
| 189 |
+
The AnalysisAgent (in src/agents/) wraps this service for magentic mode.
|
| 190 |
+
"""
|
| 191 |
+
|
| 192 |
+
import asyncio
|
| 193 |
+
import re
|
| 194 |
+
from functools import partial
|
| 195 |
+
from typing import Any
|
| 196 |
+
|
| 197 |
+
from pydantic import BaseModel, Field
|
| 198 |
+
from pydantic_ai import Agent
|
| 199 |
+
|
| 200 |
+
from src.agent_factory.judges import get_model
|
| 201 |
+
from src.tools.code_execution import (
|
| 202 |
+
CodeExecutionError,
|
| 203 |
+
get_code_executor,
|
| 204 |
+
get_sandbox_library_prompt,
|
| 205 |
+
)
|
| 206 |
+
from src.utils.models import Evidence
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class AnalysisResult(BaseModel):
|
| 210 |
+
"""Result of statistical analysis."""
|
| 211 |
+
|
| 212 |
+
verdict: str = Field(
|
| 213 |
+
description="SUPPORTED, REFUTED, or INCONCLUSIVE",
|
| 214 |
+
)
|
| 215 |
+
confidence: float = Field(ge=0.0, le=1.0, description="Confidence in verdict (0-1)")
|
| 216 |
+
statistical_evidence: str = Field(
|
| 217 |
+
description="Summary of statistical findings from code execution"
|
| 218 |
+
)
|
| 219 |
+
code_generated: str = Field(description="Python code that was executed")
|
| 220 |
+
execution_output: str = Field(description="Output from code execution")
|
| 221 |
+
key_findings: list[str] = Field(default_factory=list, description="Key takeaways")
|
| 222 |
+
limitations: list[str] = Field(default_factory=list, description="Limitations")
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
class StatisticalAnalyzer:
|
| 226 |
+
"""Performs statistical analysis using Modal code execution.
|
| 227 |
+
|
| 228 |
+
This service:
|
| 229 |
+
1. Generates Python code for statistical analysis using LLM
|
| 230 |
+
2. Executes code in Modal sandbox
|
| 231 |
+
3. Interprets results
|
| 232 |
+
4. Returns verdict (SUPPORTED/REFUTED/INCONCLUSIVE)
|
| 233 |
+
|
| 234 |
+
Note: This class has NO agent_framework dependency, making it safe
|
| 235 |
+
to use in the simple orchestrator without the magentic extra.
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
def __init__(self) -> None:
|
| 239 |
+
"""Initialize the analyzer."""
|
| 240 |
+
self._code_executor: Any = None
|
| 241 |
+
self._agent: Agent[None, str] | None = None
|
| 242 |
+
|
| 243 |
+
def _get_code_executor(self) -> Any:
|
| 244 |
+
"""Lazy initialization of code executor."""
|
| 245 |
+
if self._code_executor is None:
|
| 246 |
+
self._code_executor = get_code_executor()
|
| 247 |
+
return self._code_executor
|
| 248 |
+
|
| 249 |
+
def _get_agent(self) -> Agent[None, str]:
|
| 250 |
+
"""Lazy initialization of LLM agent for code generation."""
|
| 251 |
+
if self._agent is None:
|
| 252 |
+
library_versions = get_sandbox_library_prompt()
|
| 253 |
+
self._agent = Agent(
|
| 254 |
+
model=get_model(),
|
| 255 |
+
output_type=str,
|
| 256 |
+
system_prompt=f"""You are a biomedical data scientist.
|
| 257 |
+
|
| 258 |
+
Generate Python code to analyze research evidence and test hypotheses.
|
| 259 |
+
|
| 260 |
+
Guidelines:
|
| 261 |
+
1. Use pandas, numpy, scipy.stats for analysis
|
| 262 |
+
2. Print clear, interpretable results
|
| 263 |
+
3. Include statistical tests (t-tests, chi-square, etc.)
|
| 264 |
+
4. Calculate effect sizes and confidence intervals
|
| 265 |
+
5. Keep code concise (<50 lines)
|
| 266 |
+
6. Set 'result' variable to SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 267 |
+
|
| 268 |
+
Available libraries:
|
| 269 |
+
{library_versions}
|
| 270 |
+
|
| 271 |
+
Output format: Return ONLY executable Python code, no explanations.""",
|
| 272 |
+
)
|
| 273 |
+
return self._agent
|
| 274 |
+
|
| 275 |
+
async def analyze(
|
| 276 |
+
self,
|
| 277 |
+
query: str,
|
| 278 |
+
evidence: list[Evidence],
|
| 279 |
+
hypothesis: dict[str, Any] | None = None,
|
| 280 |
+
) -> AnalysisResult:
|
| 281 |
+
"""Run statistical analysis on evidence.
|
| 282 |
+
|
| 283 |
+
Args:
|
| 284 |
+
query: The research question
|
| 285 |
+
evidence: List of Evidence objects to analyze
|
| 286 |
+
hypothesis: Optional hypothesis dict with drug, target, pathway, effect
|
| 287 |
+
|
| 288 |
+
Returns:
|
| 289 |
+
AnalysisResult with verdict and statistics
|
| 290 |
+
"""
|
| 291 |
+
# Build analysis prompt
|
| 292 |
+
evidence_summary = self._summarize_evidence(evidence[:10])
|
| 293 |
+
hypothesis_text = ""
|
| 294 |
+
if hypothesis:
|
| 295 |
+
hypothesis_text = f"""
|
| 296 |
+
Hypothesis: {hypothesis.get('drug', 'Unknown')} β {hypothesis.get('target', '?')} β {hypothesis.get('pathway', '?')} β {hypothesis.get('effect', '?')}
|
| 297 |
+
Confidence: {hypothesis.get('confidence', 0.5):.0%}
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
prompt = f"""Generate Python code to statistically analyze:
|
| 301 |
+
|
| 302 |
+
**Research Question**: {query}
|
| 303 |
+
{hypothesis_text}
|
| 304 |
+
|
| 305 |
+
**Evidence Summary**:
|
| 306 |
+
{evidence_summary}
|
| 307 |
+
|
| 308 |
+
Generate executable Python code to analyze this evidence."""
|
| 309 |
+
|
| 310 |
+
try:
|
| 311 |
+
# Generate code
|
| 312 |
+
agent = self._get_agent()
|
| 313 |
+
code_result = await agent.run(prompt)
|
| 314 |
+
generated_code = code_result.output
|
| 315 |
+
|
| 316 |
+
# Execute in Modal sandbox
|
| 317 |
+
loop = asyncio.get_running_loop()
|
| 318 |
+
executor = self._get_code_executor()
|
| 319 |
+
execution = await loop.run_in_executor(
|
| 320 |
+
None, partial(executor.execute, generated_code, timeout=120)
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
if not execution["success"]:
|
| 324 |
+
return AnalysisResult(
|
| 325 |
+
verdict="INCONCLUSIVE",
|
| 326 |
+
confidence=0.0,
|
| 327 |
+
statistical_evidence=f"Execution failed: {execution['error']}",
|
| 328 |
+
code_generated=generated_code,
|
| 329 |
+
execution_output=execution.get("stderr", ""),
|
| 330 |
+
key_findings=[],
|
| 331 |
+
limitations=["Code execution failed"],
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# Interpret results
|
| 335 |
+
return self._interpret_results(generated_code, execution)
|
| 336 |
+
|
| 337 |
+
except CodeExecutionError as e:
|
| 338 |
+
return AnalysisResult(
|
| 339 |
+
verdict="INCONCLUSIVE",
|
| 340 |
+
confidence=0.0,
|
| 341 |
+
statistical_evidence=str(e),
|
| 342 |
+
code_generated="",
|
| 343 |
+
execution_output="",
|
| 344 |
+
key_findings=[],
|
| 345 |
+
limitations=[f"Analysis error: {e}"],
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
def _summarize_evidence(self, evidence: list[Evidence]) -> str:
|
| 349 |
+
"""Summarize evidence for code generation prompt."""
|
| 350 |
+
if not evidence:
|
| 351 |
+
return "No evidence available."
|
| 352 |
+
|
| 353 |
+
lines = []
|
| 354 |
+
for i, ev in enumerate(evidence[:5], 1):
|
| 355 |
+
lines.append(f"{i}. {ev.content[:200]}...")
|
| 356 |
+
lines.append(f" Source: {ev.citation.title}")
|
| 357 |
+
lines.append(f" Relevance: {ev.relevance:.0%}\n")
|
| 358 |
+
|
| 359 |
+
return "\n".join(lines)
|
| 360 |
+
|
| 361 |
+
def _interpret_results(
|
| 362 |
+
self,
|
| 363 |
+
code: str,
|
| 364 |
+
execution: dict[str, Any],
|
| 365 |
+
) -> AnalysisResult:
|
| 366 |
+
"""Interpret code execution results."""
|
| 367 |
+
stdout = execution["stdout"]
|
| 368 |
+
stdout_upper = stdout.upper()
|
| 369 |
+
|
| 370 |
+
# Extract verdict with robust word-boundary matching
|
| 371 |
+
verdict = "INCONCLUSIVE"
|
| 372 |
+
if re.search(r"\bSUPPORTED\b", stdout_upper) and not re.search(
|
| 373 |
+
r"\b(?:NOT|UN)SUPPORTED\b", stdout_upper
|
| 374 |
+
):
|
| 375 |
+
verdict = "SUPPORTED"
|
| 376 |
+
elif re.search(r"\bREFUTED\b", stdout_upper):
|
| 377 |
+
verdict = "REFUTED"
|
| 378 |
+
|
| 379 |
+
# Extract key findings
|
| 380 |
+
key_findings = []
|
| 381 |
+
for line in stdout.split("\n"):
|
| 382 |
+
line_lower = line.lower()
|
| 383 |
+
if any(kw in line_lower for kw in ["p-value", "significant", "effect", "mean"]):
|
| 384 |
+
key_findings.append(line.strip())
|
| 385 |
+
|
| 386 |
+
# Calculate confidence from p-values
|
| 387 |
+
confidence = self._calculate_confidence(stdout)
|
| 388 |
+
|
| 389 |
+
return AnalysisResult(
|
| 390 |
+
verdict=verdict,
|
| 391 |
+
confidence=confidence,
|
| 392 |
+
statistical_evidence=stdout.strip(),
|
| 393 |
+
code_generated=code,
|
| 394 |
+
execution_output=stdout,
|
| 395 |
+
key_findings=key_findings[:5],
|
| 396 |
+
limitations=[
|
| 397 |
+
"Analysis based on summary data only",
|
| 398 |
+
"Limited to available evidence",
|
| 399 |
+
"Statistical tests assume data independence",
|
| 400 |
+
],
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
def _calculate_confidence(self, output: str) -> float:
|
| 404 |
+
"""Calculate confidence based on statistical results."""
|
| 405 |
+
p_values = re.findall(r"p[-\s]?value[:\s]+(\d+\.?\d*)", output.lower())
|
| 406 |
+
|
| 407 |
+
if p_values:
|
| 408 |
+
try:
|
| 409 |
+
min_p = min(float(p) for p in p_values)
|
| 410 |
+
if min_p < 0.001:
|
| 411 |
+
return 0.95
|
| 412 |
+
elif min_p < 0.01:
|
| 413 |
+
return 0.90
|
| 414 |
+
elif min_p < 0.05:
|
| 415 |
+
return 0.80
|
| 416 |
+
else:
|
| 417 |
+
return 0.60
|
| 418 |
+
except ValueError:
|
| 419 |
+
pass
|
| 420 |
+
|
| 421 |
+
return 0.70 # Default
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
# Singleton for reuse
|
| 425 |
+
_analyzer: StatisticalAnalyzer | None = None
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
def get_statistical_analyzer() -> StatisticalAnalyzer:
|
| 429 |
+
"""Get or create singleton StatisticalAnalyzer instance."""
|
| 430 |
+
global _analyzer
|
| 431 |
+
if _analyzer is None:
|
| 432 |
+
_analyzer = StatisticalAnalyzer()
|
| 433 |
+
return _analyzer
|
| 434 |
+
```
|
| 435 |
+
|
| 436 |
+
### 5.3 Simple Orchestrator Update (`src/orchestrator.py`)
|
| 437 |
+
|
| 438 |
+
**Uses `StatisticalAnalyzer` directly - NO agent_framework import.**
|
| 439 |
|
| 440 |
```python
|
| 441 |
"""Main orchestrator with optional Modal analysis."""
|
|
|
|
| 461 |
self.history: list[dict[str, Any]] = []
|
| 462 |
self._enable_analysis = enable_analysis and settings.modal_available
|
| 463 |
|
| 464 |
+
# Lazy-load analysis (NO agent_framework dependency!)
|
| 465 |
+
self._analyzer: Any = None
|
|
|
|
| 466 |
|
| 467 |
+
def _get_analyzer(self) -> Any:
|
| 468 |
+
"""Lazy initialization of StatisticalAnalyzer.
|
|
|
|
|
|
|
| 469 |
|
| 470 |
+
Note: This imports from src.services, NOT src.agents,
|
| 471 |
+
so it works without the magentic optional dependency.
|
| 472 |
+
"""
|
| 473 |
+
if self._analyzer is None:
|
| 474 |
+
from src.services.statistical_analyzer import get_statistical_analyzer
|
| 475 |
|
| 476 |
+
self._analyzer = get_statistical_analyzer()
|
| 477 |
+
return self._analyzer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
|
| 480 |
"""Main orchestration loop with optional Modal analysis."""
|
|
|
|
| 490 |
)
|
| 491 |
|
| 492 |
try:
|
| 493 |
+
analyzer = self._get_analyzer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
|
| 495 |
+
# Run Modal analysis (no agent_framework needed!)
|
| 496 |
+
analysis_result = await analyzer.analyze(
|
| 497 |
+
query=query,
|
| 498 |
+
evidence=all_evidence,
|
| 499 |
+
hypothesis=None, # Could add hypothesis generation later
|
| 500 |
+
)
|
| 501 |
|
| 502 |
yield AgentEvent(
|
| 503 |
type="analysis_complete",
|
| 504 |
+
message=f"Analysis verdict: {analysis_result.verdict}",
|
| 505 |
+
data=analysis_result.model_dump(),
|
| 506 |
iteration=iteration,
|
| 507 |
)
|
| 508 |
|
|
|
|
| 517 |
# Continue to synthesis...
|
| 518 |
```
|
| 519 |
|
| 520 |
+
### 5.4 Refactor AnalysisAgent (`src/agents/analysis_agent.py`)
|
| 521 |
+
|
| 522 |
+
**Wrap `StatisticalAnalyzer` for magentic mode.**
|
| 523 |
+
|
| 524 |
+
```python
|
| 525 |
+
"""Analysis agent for statistical analysis using Modal code execution.
|
| 526 |
+
|
| 527 |
+
This agent wraps StatisticalAnalyzer for use in magentic multi-agent mode.
|
| 528 |
+
The core logic is in src/services/statistical_analyzer.py to avoid
|
| 529 |
+
coupling agent_framework to the simple orchestrator.
|
| 530 |
+
"""
|
| 531 |
+
|
| 532 |
+
from collections.abc import AsyncIterable
|
| 533 |
+
from typing import TYPE_CHECKING, Any
|
| 534 |
+
|
| 535 |
+
from agent_framework import (
|
| 536 |
+
AgentRunResponse,
|
| 537 |
+
AgentRunResponseUpdate,
|
| 538 |
+
AgentThread,
|
| 539 |
+
BaseAgent,
|
| 540 |
+
ChatMessage,
|
| 541 |
+
Role,
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
from src.services.statistical_analyzer import (
|
| 545 |
+
AnalysisResult,
|
| 546 |
+
get_statistical_analyzer,
|
| 547 |
+
)
|
| 548 |
+
from src.utils.models import Evidence
|
| 549 |
+
|
| 550 |
+
if TYPE_CHECKING:
|
| 551 |
+
from src.services.embeddings import EmbeddingService
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
class AnalysisAgent(BaseAgent): # type: ignore[misc]
|
| 555 |
+
"""Wraps StatisticalAnalyzer for magentic multi-agent mode."""
|
| 556 |
+
|
| 557 |
+
def __init__(
|
| 558 |
+
self,
|
| 559 |
+
evidence_store: dict[str, Any],
|
| 560 |
+
embedding_service: "EmbeddingService | None" = None,
|
| 561 |
+
) -> None:
|
| 562 |
+
super().__init__(
|
| 563 |
+
name="AnalysisAgent",
|
| 564 |
+
description="Performs statistical analysis using Modal sandbox",
|
| 565 |
+
)
|
| 566 |
+
self._evidence_store = evidence_store
|
| 567 |
+
self._embeddings = embedding_service
|
| 568 |
+
self._analyzer = get_statistical_analyzer()
|
| 569 |
+
|
| 570 |
+
async def run(
|
| 571 |
+
self,
|
| 572 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 573 |
+
*,
|
| 574 |
+
thread: AgentThread | None = None,
|
| 575 |
+
**kwargs: Any,
|
| 576 |
+
) -> AgentRunResponse:
|
| 577 |
+
"""Analyze evidence and return verdict."""
|
| 578 |
+
query = self._extract_query(messages)
|
| 579 |
+
hypotheses = self._evidence_store.get("hypotheses", [])
|
| 580 |
+
evidence = self._evidence_store.get("current", [])
|
| 581 |
+
|
| 582 |
+
if not evidence:
|
| 583 |
+
return self._error_response("No evidence available.")
|
| 584 |
+
|
| 585 |
+
# Get primary hypothesis if available
|
| 586 |
+
hypothesis_dict = None
|
| 587 |
+
if hypotheses:
|
| 588 |
+
h = hypotheses[0]
|
| 589 |
+
hypothesis_dict = {
|
| 590 |
+
"drug": getattr(h, "drug", "Unknown"),
|
| 591 |
+
"target": getattr(h, "target", "?"),
|
| 592 |
+
"pathway": getattr(h, "pathway", "?"),
|
| 593 |
+
"effect": getattr(h, "effect", "?"),
|
| 594 |
+
"confidence": getattr(h, "confidence", 0.5),
|
| 595 |
+
}
|
| 596 |
+
|
| 597 |
+
# Delegate to StatisticalAnalyzer
|
| 598 |
+
result = await self._analyzer.analyze(
|
| 599 |
+
query=query,
|
| 600 |
+
evidence=evidence,
|
| 601 |
+
hypothesis=hypothesis_dict,
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
# Store in shared context
|
| 605 |
+
self._evidence_store["analysis"] = result.model_dump()
|
| 606 |
+
|
| 607 |
+
# Format response
|
| 608 |
+
response_text = self._format_response(result)
|
| 609 |
+
|
| 610 |
+
return AgentRunResponse(
|
| 611 |
+
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
|
| 612 |
+
response_id=f"analysis-{result.verdict.lower()}",
|
| 613 |
+
additional_properties={"analysis": result.model_dump()},
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
def _format_response(self, result: AnalysisResult) -> str:
|
| 617 |
+
"""Format analysis result as markdown."""
|
| 618 |
+
lines = [
|
| 619 |
+
"## Statistical Analysis Complete\n",
|
| 620 |
+
f"### Verdict: **{result.verdict}**",
|
| 621 |
+
f"**Confidence**: {result.confidence:.0%}\n",
|
| 622 |
+
"### Key Findings",
|
| 623 |
+
]
|
| 624 |
+
for finding in result.key_findings:
|
| 625 |
+
lines.append(f"- {finding}")
|
| 626 |
+
|
| 627 |
+
lines.extend([
|
| 628 |
+
"\n### Statistical Evidence",
|
| 629 |
+
"```",
|
| 630 |
+
result.statistical_evidence,
|
| 631 |
+
"```",
|
| 632 |
+
])
|
| 633 |
+
return "\n".join(lines)
|
| 634 |
+
|
| 635 |
+
def _error_response(self, message: str) -> AgentRunResponse:
|
| 636 |
+
"""Create error response."""
|
| 637 |
+
return AgentRunResponse(
|
| 638 |
+
messages=[ChatMessage(role=Role.ASSISTANT, text=f"**Error**: {message}")],
|
| 639 |
+
response_id="analysis-error",
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
def _extract_query(
|
| 643 |
+
self, messages: str | ChatMessage | list[str] | list[ChatMessage] | None
|
| 644 |
+
) -> str:
|
| 645 |
+
"""Extract query from messages."""
|
| 646 |
+
if isinstance(messages, str):
|
| 647 |
+
return messages
|
| 648 |
+
elif isinstance(messages, ChatMessage):
|
| 649 |
+
return messages.text or ""
|
| 650 |
+
elif isinstance(messages, list):
|
| 651 |
+
for msg in reversed(messages):
|
| 652 |
+
if isinstance(msg, ChatMessage) and msg.role == Role.USER:
|
| 653 |
+
return msg.text or ""
|
| 654 |
+
elif isinstance(msg, str):
|
| 655 |
+
return msg
|
| 656 |
+
return ""
|
| 657 |
+
|
| 658 |
+
async def run_stream(
|
| 659 |
+
self,
|
| 660 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 661 |
+
*,
|
| 662 |
+
thread: AgentThread | None = None,
|
| 663 |
+
**kwargs: Any,
|
| 664 |
+
) -> AsyncIterable[AgentRunResponseUpdate]:
|
| 665 |
+
"""Streaming wrapper."""
|
| 666 |
+
result = await self.run(messages, thread=thread, **kwargs)
|
| 667 |
+
yield AgentRunResponseUpdate(messages=result.messages, response_id=result.response_id)
|
| 668 |
+
```
|
| 669 |
+
|
| 670 |
+
### 5.5 MCP Tool for Modal Analysis (`src/mcp_tools.py`)
|
| 671 |
|
| 672 |
+
Add to existing MCP tools:
|
| 673 |
|
| 674 |
```python
|
| 675 |
async def analyze_hypothesis(
|
|
|
|
| 690 |
Returns:
|
| 691 |
Analysis result with verdict (SUPPORTED/REFUTED/INCONCLUSIVE) and statistics
|
| 692 |
"""
|
| 693 |
+
from src.services.statistical_analyzer import get_statistical_analyzer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
from src.utils.config import settings
|
| 695 |
+
from src.utils.models import Citation, Evidence
|
| 696 |
+
|
| 697 |
if not settings.modal_available:
|
| 698 |
return "Error: Modal credentials not configured. Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET."
|
| 699 |
|
| 700 |
+
# Create evidence from summary
|
| 701 |
+
evidence = [
|
| 702 |
+
Evidence(
|
| 703 |
+
content=evidence_summary,
|
| 704 |
+
citation=Citation(
|
| 705 |
+
source="pubmed",
|
| 706 |
+
title=f"Evidence for {drug} in {condition}",
|
| 707 |
+
url="https://example.com",
|
| 708 |
+
date="2024-01-01",
|
| 709 |
+
authors=["User Provided"],
|
| 710 |
+
),
|
| 711 |
+
relevance=0.9,
|
| 712 |
+
)
|
| 713 |
+
]
|
|
|
|
|
|
|
| 714 |
|
| 715 |
+
analyzer = get_statistical_analyzer()
|
| 716 |
+
result = await analyzer.analyze(
|
| 717 |
+
query=f"Can {drug} treat {condition}?",
|
| 718 |
+
evidence=evidence,
|
| 719 |
+
hypothesis={"drug": drug, "target": "unknown", "pathway": "unknown", "effect": condition},
|
| 720 |
+
)
|
| 721 |
|
| 722 |
+
return f"""## Statistical Analysis: {drug} for {condition}
|
|
|
|
|
|
|
| 723 |
|
| 724 |
+
### Verdict: **{result.verdict}**
|
| 725 |
+
**Confidence**: {result.confidence:.0%}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 726 |
|
| 727 |
+
### Key Findings
|
| 728 |
+
{chr(10).join(f"- {f}" for f in result.key_findings) or "- No specific findings extracted"}
|
|
|
|
|
|
|
|
|
|
| 729 |
|
| 730 |
### Execution Output
|
| 731 |
```
|
| 732 |
+
{result.execution_output}
|
| 733 |
```
|
| 734 |
|
| 735 |
### Generated Code
|
| 736 |
```python
|
| 737 |
+
{result.code_generated}
|
| 738 |
```
|
| 739 |
|
| 740 |
**Executed in Modal Sandbox** - Isolated, secure, reproducible.
|
| 741 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 742 |
```
|
| 743 |
|
| 744 |
+
### 5.6 Demo Scripts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 745 |
|
| 746 |
+
#### `examples/modal_demo/verify_sandbox.py`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 747 |
|
| 748 |
```python
|
| 749 |
#!/usr/bin/env python3
|
| 750 |
"""Verify that Modal sandbox is properly isolated.
|
| 751 |
|
| 752 |
This script proves to judges that code runs in Modal, not locally.
|
| 753 |
+
NO agent_framework dependency - uses only src.tools.code_execution.
|
| 754 |
|
| 755 |
Usage:
|
| 756 |
uv run python examples/modal_demo/verify_sandbox.py
|
|
|
|
| 767 |
"""Verify Modal sandbox isolation."""
|
| 768 |
if not settings.modal_available:
|
| 769 |
print("Error: Modal credentials not configured.")
|
| 770 |
+
print("Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env")
|
| 771 |
return
|
| 772 |
|
| 773 |
executor = get_code_executor()
|
| 774 |
loop = asyncio.get_running_loop()
|
| 775 |
|
| 776 |
+
print("=" * 60)
|
| 777 |
print("Modal Sandbox Isolation Verification")
|
| 778 |
+
print("=" * 60 + "\n")
|
| 779 |
|
| 780 |
+
# Test 1: Hostname
|
| 781 |
print("Test 1: Check hostname (should NOT be your machine)")
|
| 782 |
+
code1 = "import socket; print(f'Hostname: {socket.gethostname()}')"
|
|
|
|
|
|
|
|
|
|
| 783 |
result1 = await loop.run_in_executor(None, partial(executor.execute, code1))
|
| 784 |
+
print(f" {result1['stdout'].strip()}\n")
|
|
|
|
| 785 |
|
| 786 |
+
# Test 2: Scientific libraries
|
| 787 |
print("Test 2: Verify scientific libraries")
|
| 788 |
code2 = """
|
| 789 |
import pandas as pd
|
|
|
|
| 796 |
result2 = await loop.run_in_executor(None, partial(executor.execute, code2))
|
| 797 |
print(f" {result2['stdout'].strip()}\n")
|
| 798 |
|
| 799 |
+
# Test 3: Network blocked
|
| 800 |
+
print("Test 3: Verify network isolation")
|
| 801 |
code3 = """
|
| 802 |
import urllib.request
|
| 803 |
try:
|
| 804 |
urllib.request.urlopen("https://google.com", timeout=2)
|
| 805 |
+
print("Network: ALLOWED (unexpected!)")
|
| 806 |
+
except Exception:
|
| 807 |
+
print("Network: BLOCKED (as expected)")
|
| 808 |
"""
|
| 809 |
result3 = await loop.run_in_executor(None, partial(executor.execute, code3))
|
| 810 |
print(f" {result3['stdout'].strip()}\n")
|
| 811 |
|
| 812 |
+
# Test 4: Real statistics
|
| 813 |
+
print("Test 4: Execute statistical analysis")
|
| 814 |
code4 = """
|
| 815 |
import pandas as pd
|
| 816 |
import scipy.stats as stats
|
| 817 |
|
| 818 |
+
data = pd.DataFrame({'effect': [0.42, 0.38, 0.51]})
|
| 819 |
+
mean = data['effect'].mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 820 |
t_stat, p_val = stats.ttest_1samp(data['effect'], 0)
|
| 821 |
|
| 822 |
+
print(f"Mean Effect: {mean:.3f}")
|
| 823 |
+
print(f"P-value: {p_val:.4f}")
|
| 824 |
print(f"Verdict: {'SUPPORTED' if p_val < 0.05 else 'INCONCLUSIVE'}")
|
| 825 |
"""
|
| 826 |
result4 = await loop.run_in_executor(None, partial(executor.execute, code4))
|
| 827 |
print(f" {result4['stdout'].strip()}\n")
|
| 828 |
|
| 829 |
+
print("=" * 60)
|
| 830 |
print("All tests complete - Modal sandbox verified!")
|
| 831 |
+
print("=" * 60)
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
if __name__ == "__main__":
|
| 835 |
+
asyncio.run(main())
|
| 836 |
+
```
|
| 837 |
+
|
| 838 |
+
#### `examples/modal_demo/run_analysis.py`
|
| 839 |
+
|
| 840 |
+
```python
|
| 841 |
+
#!/usr/bin/env python3
|
| 842 |
+
"""Demo: Modal-powered statistical analysis.
|
| 843 |
+
|
| 844 |
+
This script uses StatisticalAnalyzer directly (NO agent_framework dependency).
|
| 845 |
+
|
| 846 |
+
Usage:
|
| 847 |
+
uv run python examples/modal_demo/run_analysis.py "metformin alzheimer"
|
| 848 |
+
"""
|
| 849 |
+
|
| 850 |
+
import argparse
|
| 851 |
+
import asyncio
|
| 852 |
+
import os
|
| 853 |
+
import sys
|
| 854 |
+
|
| 855 |
+
from src.services.statistical_analyzer import get_statistical_analyzer
|
| 856 |
+
from src.tools.pubmed import PubMedTool
|
| 857 |
+
from src.utils.config import settings
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
async def main() -> None:
|
| 861 |
+
"""Run the Modal analysis demo."""
|
| 862 |
+
parser = argparse.ArgumentParser(description="Modal Analysis Demo")
|
| 863 |
+
parser.add_argument("query", help="Research query")
|
| 864 |
+
args = parser.parse_args()
|
| 865 |
+
|
| 866 |
+
if not settings.modal_available:
|
| 867 |
+
print("Error: Modal credentials not configured.")
|
| 868 |
+
sys.exit(1)
|
| 869 |
+
|
| 870 |
+
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
|
| 871 |
+
print("Error: No LLM API key found.")
|
| 872 |
+
sys.exit(1)
|
| 873 |
+
|
| 874 |
+
print(f"\n{'=' * 60}")
|
| 875 |
+
print("DeepCritical Modal Analysis Demo")
|
| 876 |
+
print(f"Query: {args.query}")
|
| 877 |
+
print(f"{'=' * 60}\n")
|
| 878 |
+
|
| 879 |
+
# Step 1: Gather Evidence
|
| 880 |
+
print("Step 1: Gathering evidence from PubMed...")
|
| 881 |
+
pubmed = PubMedTool()
|
| 882 |
+
evidence = await pubmed.search(args.query, max_results=5)
|
| 883 |
+
print(f" Found {len(evidence)} papers\n")
|
| 884 |
+
|
| 885 |
+
# Step 2: Run Modal Analysis
|
| 886 |
+
print("Step 2: Running statistical analysis in Modal sandbox...")
|
| 887 |
+
analyzer = get_statistical_analyzer()
|
| 888 |
+
result = await analyzer.analyze(query=args.query, evidence=evidence)
|
| 889 |
+
|
| 890 |
+
# Step 3: Display Results
|
| 891 |
+
print("\n" + "=" * 60)
|
| 892 |
+
print("ANALYSIS RESULTS")
|
| 893 |
+
print("=" * 60)
|
| 894 |
+
print(f"\nVerdict: {result.verdict}")
|
| 895 |
+
print(f"Confidence: {result.confidence:.0%}")
|
| 896 |
+
print("\nKey Findings:")
|
| 897 |
+
for finding in result.key_findings:
|
| 898 |
+
print(f" - {finding}")
|
| 899 |
+
|
| 900 |
+
print("\n[Demo Complete - Code executed in Modal, not locally]")
|
| 901 |
|
| 902 |
|
| 903 |
if __name__ == "__main__":
|
|
|
|
| 906 |
|
| 907 |
---
|
| 908 |
|
| 909 |
+
## 6. TDD Test Suite
|
| 910 |
|
| 911 |
+
### 6.1 Unit Tests (`tests/unit/services/test_statistical_analyzer.py`)
|
| 912 |
|
| 913 |
```python
|
| 914 |
+
"""Unit tests for StatisticalAnalyzer service."""
|
| 915 |
|
| 916 |
from unittest.mock import AsyncMock, MagicMock, patch
|
| 917 |
|
| 918 |
import pytest
|
| 919 |
|
| 920 |
+
from src.services.statistical_analyzer import (
|
| 921 |
+
AnalysisResult,
|
| 922 |
+
StatisticalAnalyzer,
|
| 923 |
+
get_statistical_analyzer,
|
| 924 |
+
)
|
| 925 |
+
from src.utils.models import Citation, Evidence
|
| 926 |
|
| 927 |
|
| 928 |
@pytest.fixture
|
|
|
|
| 930 |
"""Sample evidence for testing."""
|
| 931 |
return [
|
| 932 |
Evidence(
|
| 933 |
+
content="Metformin shows effect size of 0.45.",
|
| 934 |
citation=Citation(
|
| 935 |
source="pubmed",
|
| 936 |
title="Metformin Study",
|
|
|
|
| 943 |
]
|
| 944 |
|
| 945 |
|
| 946 |
+
class TestStatisticalAnalyzer:
|
| 947 |
+
"""Tests for StatisticalAnalyzer (no agent_framework dependency)."""
|
| 948 |
+
|
| 949 |
+
def test_no_agent_framework_import(self) -> None:
|
| 950 |
+
"""StatisticalAnalyzer must NOT import agent_framework."""
|
| 951 |
+
import src.services.statistical_analyzer as module
|
| 952 |
+
|
| 953 |
+
# Check module doesn't import agent_framework
|
| 954 |
+
source = open(module.__file__).read()
|
| 955 |
+
assert "agent_framework" not in source
|
| 956 |
+
assert "BaseAgent" not in source
|
| 957 |
|
| 958 |
@pytest.mark.asyncio
|
| 959 |
+
async def test_analyze_returns_result(
|
| 960 |
self, sample_evidence: list[Evidence]
|
| 961 |
) -> None:
|
| 962 |
+
"""analyze() should return AnalysisResult."""
|
| 963 |
+
analyzer = StatisticalAnalyzer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 964 |
|
| 965 |
+
with patch.object(analyzer, "_get_agent") as mock_agent, \
|
| 966 |
+
patch.object(analyzer, "_get_code_executor") as mock_executor:
|
| 967 |
|
| 968 |
+
# Mock LLM
|
| 969 |
+
mock_agent.return_value.run = AsyncMock(
|
| 970 |
+
return_value=MagicMock(output="print('SUPPORTED')")
|
| 971 |
+
)
|
|
|
|
| 972 |
|
| 973 |
+
# Mock Modal
|
| 974 |
mock_executor.return_value.execute.return_value = {
|
| 975 |
+
"stdout": "SUPPORTED\np-value: 0.01",
|
| 976 |
"stderr": "",
|
| 977 |
"success": True,
|
|
|
|
| 978 |
}
|
| 979 |
|
| 980 |
+
result = await analyzer.analyze("test query", sample_evidence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 981 |
|
| 982 |
+
assert isinstance(result, AnalysisResult)
|
| 983 |
+
assert result.verdict == "SUPPORTED"
|
| 984 |
|
| 985 |
+
def test_singleton(self) -> None:
|
| 986 |
+
"""get_statistical_analyzer should return singleton."""
|
| 987 |
+
a1 = get_statistical_analyzer()
|
| 988 |
+
a2 = get_statistical_analyzer()
|
| 989 |
+
assert a1 is a2
|
| 990 |
|
|
|
|
|
|
|
| 991 |
|
| 992 |
+
class TestAnalysisResult:
|
| 993 |
+
"""Tests for AnalysisResult model."""
|
|
|
|
| 994 |
|
| 995 |
+
def test_verdict_values(self) -> None:
|
| 996 |
+
"""Verdict should be one of the expected values."""
|
| 997 |
+
for verdict in ["SUPPORTED", "REFUTED", "INCONCLUSIVE"]:
|
| 998 |
+
result = AnalysisResult(
|
| 999 |
+
verdict=verdict,
|
| 1000 |
+
confidence=0.8,
|
| 1001 |
+
statistical_evidence="test",
|
| 1002 |
+
code_generated="print('test')",
|
| 1003 |
+
execution_output="test",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1004 |
)
|
| 1005 |
+
assert result.verdict == verdict
|
| 1006 |
+
|
| 1007 |
+
def test_confidence_bounds(self) -> None:
|
| 1008 |
+
"""Confidence must be 0.0-1.0."""
|
| 1009 |
+
with pytest.raises(ValueError):
|
| 1010 |
+
AnalysisResult(
|
| 1011 |
+
verdict="SUPPORTED",
|
| 1012 |
+
confidence=1.5, # Invalid
|
| 1013 |
+
statistical_evidence="test",
|
| 1014 |
+
code_generated="test",
|
| 1015 |
+
execution_output="test",
|
| 1016 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1017 |
```
|
| 1018 |
|
| 1019 |
+
### 6.2 Integration Test (`tests/integration/test_modal.py`)
|
| 1020 |
|
| 1021 |
```python
|
| 1022 |
+
"""Integration tests for Modal (requires credentials)."""
|
| 1023 |
|
| 1024 |
import pytest
|
| 1025 |
|
|
|
|
| 1027 |
|
| 1028 |
|
| 1029 |
@pytest.mark.integration
|
| 1030 |
+
@pytest.mark.skipif(not settings.modal_available, reason="Modal not configured")
|
|
|
|
|
|
|
|
|
|
| 1031 |
class TestModalIntegration:
|
| 1032 |
+
"""Integration tests requiring Modal credentials."""
|
| 1033 |
|
| 1034 |
@pytest.mark.asyncio
|
| 1035 |
+
async def test_sandbox_executes_code(self) -> None:
|
| 1036 |
+
"""Modal sandbox should execute Python code."""
|
| 1037 |
import asyncio
|
| 1038 |
from functools import partial
|
| 1039 |
|
| 1040 |
from src.tools.code_execution import get_code_executor
|
| 1041 |
|
| 1042 |
executor = get_code_executor()
|
| 1043 |
+
code = "import pandas as pd; print(pd.DataFrame({'a': [1,2,3]})['a'].sum())"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1044 |
|
| 1045 |
loop = asyncio.get_running_loop()
|
| 1046 |
result = await loop.run_in_executor(
|
|
|
|
| 1048 |
)
|
| 1049 |
|
| 1050 |
assert result["success"]
|
| 1051 |
+
assert "6" in result["stdout"]
|
| 1052 |
|
| 1053 |
@pytest.mark.asyncio
|
| 1054 |
+
async def test_statistical_analyzer_works(self) -> None:
|
| 1055 |
+
"""StatisticalAnalyzer should work end-to-end."""
|
| 1056 |
+
from src.services.statistical_analyzer import get_statistical_analyzer
|
| 1057 |
+
from src.utils.models import Citation, Evidence
|
| 1058 |
+
|
| 1059 |
+
evidence = [
|
| 1060 |
+
Evidence(
|
| 1061 |
+
content="Drug shows 40% improvement in trial.",
|
| 1062 |
+
citation=Citation(
|
| 1063 |
+
source="pubmed",
|
| 1064 |
+
title="Test",
|
| 1065 |
+
url="https://test.com",
|
| 1066 |
+
date="2024-01-01",
|
| 1067 |
+
authors=["Test"],
|
| 1068 |
+
),
|
| 1069 |
+
relevance=0.9,
|
| 1070 |
+
)
|
| 1071 |
+
]
|
| 1072 |
|
| 1073 |
+
analyzer = get_statistical_analyzer()
|
| 1074 |
+
result = await analyzer.analyze("test drug efficacy", evidence)
|
| 1075 |
|
| 1076 |
+
assert result.verdict in ["SUPPORTED", "REFUTED", "INCONCLUSIVE"]
|
| 1077 |
+
assert 0.0 <= result.confidence <= 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1078 |
```
|
| 1079 |
|
| 1080 |
---
|
| 1081 |
|
| 1082 |
+
## 7. Verification Commands
|
| 1083 |
|
| 1084 |
```bash
|
| 1085 |
+
# 1. Verify NO agent_framework in StatisticalAnalyzer
|
| 1086 |
+
grep -r "agent_framework" src/services/statistical_analyzer.py
|
| 1087 |
+
# Should return nothing!
|
|
|
|
|
|
|
|
|
|
| 1088 |
|
| 1089 |
+
# 2. Run unit tests (no Modal needed)
|
| 1090 |
+
uv run pytest tests/unit/services/test_statistical_analyzer.py -v
|
| 1091 |
|
| 1092 |
+
# 3. Run verification script (requires Modal)
|
| 1093 |
uv run python examples/modal_demo/verify_sandbox.py
|
| 1094 |
|
| 1095 |
+
# 4. Run analysis demo (requires Modal + LLM)
|
| 1096 |
uv run python examples/modal_demo/run_analysis.py "metformin alzheimer"
|
| 1097 |
|
| 1098 |
+
# 5. Run integration tests
|
| 1099 |
uv run pytest tests/integration/test_modal.py -v -m integration
|
| 1100 |
|
| 1101 |
+
# 6. Full test suite
|
| 1102 |
make check
|
| 1103 |
```
|
| 1104 |
|
| 1105 |
---
|
| 1106 |
|
| 1107 |
+
## 8. Definition of Done
|
| 1108 |
|
| 1109 |
Phase 13 is **COMPLETE** when:
|
| 1110 |
|
| 1111 |
+
- [ ] `src/services/statistical_analyzer.py` created (NO agent_framework)
|
| 1112 |
+
- [ ] `src/utils/config.py` has `enable_modal_analysis` setting
|
| 1113 |
+
- [ ] `src/orchestrator.py` uses `StatisticalAnalyzer` directly
|
| 1114 |
+
- [ ] `src/agents/analysis_agent.py` refactored to wrap `StatisticalAnalyzer`
|
| 1115 |
+
- [ ] `src/mcp_tools.py` has `analyze_hypothesis` tool
|
| 1116 |
+
- [ ] `examples/modal_demo/verify_sandbox.py` working
|
| 1117 |
+
- [ ] `examples/modal_demo/run_analysis.py` working
|
| 1118 |
+
- [ ] Unit tests pass WITHOUT magentic extra installed
|
| 1119 |
+
- [ ] Integration tests pass WITH Modal credentials
|
| 1120 |
+
- [ ] All lints pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1121 |
|
| 1122 |
---
|
| 1123 |
|
| 1124 |
+
## 9. Architecture After Phase 13
|
| 1125 |
+
|
| 1126 |
+
```text
|
| 1127 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 1128 |
+
β MCP Clients β
|
| 1129 |
+
β (Claude Desktop, Cursor, etc.) β
|
| 1130 |
+
βββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββ
|
| 1131 |
+
β MCP Protocol
|
| 1132 |
+
βΌ
|
| 1133 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 1134 |
+
β Gradio App + MCP Server β
|
| 1135 |
+
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
|
| 1136 |
+
β β MCP Tools: search_pubmed, search_trials, search_biorxiv β β
|
| 1137 |
+
β β search_all, analyze_hypothesis β β
|
| 1138 |
+
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
|
| 1139 |
+
βββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββ
|
| 1140 |
+
β
|
| 1141 |
+
βββββββββββββββββββββ΄ββββββββββββββββββββ
|
| 1142 |
+
β β
|
| 1143 |
+
βΌ βΌ
|
| 1144 |
+
βββββββββββββββββββββββββ βββββββββββββββββββββββββββββ
|
| 1145 |
+
β Simple Orchestrator β β Magentic Orchestrator β
|
| 1146 |
+
β (no agent_framework) β β (with agent_framework) β
|
| 1147 |
+
β β β β
|
| 1148 |
+
β SearchHandler β β SearchAgent β
|
| 1149 |
+
β JudgeHandler β β JudgeAgent β
|
| 1150 |
+
β StatisticalAnalyzer ββΌβββββββββββββΌβ AnalysisAgent ββββββββββββ€
|
| 1151 |
+
β β β (wraps StatisticalAnalyzer)
|
| 1152 |
+
βββββββββββββ¬ββββββββββββ βββββββββββββββββββββββββββββ
|
| 1153 |
+
β
|
| 1154 |
+
βΌ
|
| 1155 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 1156 |
+
β StatisticalAnalyzer β
|
| 1157 |
+
β (src/services/statistical_analyzer.py) β
|
| 1158 |
+
β NO agent_framework dependency β
|
| 1159 |
+
β β
|
| 1160 |
+
β 1. Generate code with pydantic-ai β
|
| 1161 |
+
β 2. Execute in Modal sandbox β
|
| 1162 |
+
β 3. Return AnalysisResult β
|
| 1163 |
+
βββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββ
|
| 1164 |
+
β
|
| 1165 |
+
βΌ
|
| 1166 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 1167 |
+
β Modal Sandbox β
|
| 1168 |
+
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
|
| 1169 |
+
β β - pandas, numpy, scipy, sklearn, statsmodels β β
|
| 1170 |
+
β β - Network: BLOCKED β β
|
| 1171 |
+
β β - Filesystem: ISOLATED β β
|
| 1172 |
+
β β - Timeout: ENFORCED β β
|
| 1173 |
+
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
|
| 1174 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 1175 |
+
```
|
| 1176 |
|
| 1177 |
+
**This is the dependency-safe Modal stack.**
|
|
|
|
| 1178 |
|
| 1179 |
---
|
| 1180 |
|
| 1181 |
+
## 10. Files Summary
|
| 1182 |
|
| 1183 |
| File | Action | Purpose |
|
| 1184 |
|------|--------|---------|
|
| 1185 |
+
| `src/services/statistical_analyzer.py` | **CREATE** | Core analysis (no agent_framework) |
|
| 1186 |
| `src/utils/config.py` | MODIFY | Add `enable_modal_analysis` |
|
| 1187 |
+
| `src/orchestrator.py` | MODIFY | Use `StatisticalAnalyzer` |
|
| 1188 |
+
| `src/agents/analysis_agent.py` | MODIFY | Wrap `StatisticalAnalyzer` |
|
| 1189 |
+
| `src/mcp_tools.py` | MODIFY | Add `analyze_hypothesis` |
|
| 1190 |
+
| `examples/modal_demo/verify_sandbox.py` | CREATE | Sandbox verification |
|
| 1191 |
| `examples/modal_demo/run_analysis.py` | CREATE | Demo script |
|
| 1192 |
+
| `tests/unit/services/test_statistical_analyzer.py` | CREATE | Unit tests |
|
|
|
|
| 1193 |
| `tests/integration/test_modal.py` | CREATE | Integration tests |
|
| 1194 |
|
| 1195 |
+
**Key Fix**: `StatisticalAnalyzer` has ZERO agent_framework imports, making it safe for the simple orchestrator.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|