Spaces:
Running
Running
Merge main: Phase 5 + Phase 6-8 doc revisions
Browse files
docs/architecture/overview.md
CHANGED
|
@@ -63,53 +63,58 @@ Using existing approved drugs to treat NEW diseases they weren't originally desi
|
|
| 63 |
|
| 64 |
## System Architecture
|
| 65 |
|
| 66 |
-
### High-Level Design
|
| 67 |
|
| 68 |
```
|
| 69 |
-
User
|
| 70 |
β
|
| 71 |
-
|
| 72 |
β
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
5. If YES β Synthesize findings
|
| 79 |
β
|
| 80 |
-
Research Report
|
| 81 |
```
|
| 82 |
|
| 83 |
### Key Components
|
| 84 |
|
| 85 |
-
1. **
|
| 86 |
-
-
|
| 87 |
-
-
|
| 88 |
-
-
|
| 89 |
-
-
|
| 90 |
-
|
| 91 |
-
2. **
|
| 92 |
-
- PubMed
|
| 93 |
-
-
|
| 94 |
-
-
|
| 95 |
-
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
-
|
| 100 |
-
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
-
|
| 105 |
-
-
|
| 106 |
-
-
|
| 107 |
-
|
| 108 |
-
5. **
|
| 109 |
-
-
|
| 110 |
-
-
|
| 111 |
-
-
|
| 112 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
---
|
| 115 |
|
|
@@ -275,37 +280,31 @@ httpx = "^0.27"
|
|
| 275 |
|
| 276 |
## Success Criteria
|
| 277 |
|
| 278 |
-
###
|
| 279 |
-
**
|
| 280 |
- [x] User can ask drug repurposing question
|
| 281 |
-
- [
|
| 282 |
-
- [
|
| 283 |
-
- [
|
| 284 |
-
- [
|
| 285 |
-
- [
|
| 286 |
-
- [
|
| 287 |
-
- [
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
- [
|
| 294 |
-
- [
|
| 295 |
-
- [
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
- [ ]
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
**Nice-to-have if time permits:**
|
| 304 |
-
- [ ] Modal integration for local LLM fallback
|
| 305 |
-
- [ ] Clinical trials database search
|
| 306 |
-
- [ ] Checkpoint/resume functionality
|
| 307 |
-
- [ ] OpenFDA drug safety lookup
|
| 308 |
-
- [ ] PDF export of research reports
|
| 309 |
|
| 310 |
### What's EXPLICITLY Out of Scope
|
| 311 |
**NOT building (to stay focused):**
|
|
|
|
| 63 |
|
| 64 |
## System Architecture
|
| 65 |
|
| 66 |
+
### High-Level Design (Phases 1-8)
|
| 67 |
|
| 68 |
```
|
| 69 |
+
User Query
|
| 70 |
β
|
| 71 |
+
Gradio UI (Phase 4)
|
| 72 |
β
|
| 73 |
+
Magentic Manager (Phase 5) β LLM-powered coordinator
|
| 74 |
+
βββ SearchAgent (Phase 2+5) ββ PubMed + Web + VectorDB (Phase 6)
|
| 75 |
+
βββ HypothesisAgent (Phase 7) ββ Mechanistic Reasoning
|
| 76 |
+
βββ JudgeAgent (Phase 3+5) ββ Evidence Assessment
|
| 77 |
+
βββ ReportAgent (Phase 8) ββ Final Synthesis
|
|
|
|
| 78 |
β
|
| 79 |
+
Structured Research Report
|
| 80 |
```
|
| 81 |
|
| 82 |
### Key Components
|
| 83 |
|
| 84 |
+
1. **Magentic Manager (Orchestrator)**
|
| 85 |
+
- LLM-powered multi-agent coordinator
|
| 86 |
+
- Dynamic planning and agent selection
|
| 87 |
+
- Built-in stall detection and replanning
|
| 88 |
+
- Microsoft Agent Framework integration
|
| 89 |
+
|
| 90 |
+
2. **SearchAgent (Phase 2+5+6)**
|
| 91 |
+
- PubMed E-utilities search
|
| 92 |
+
- DuckDuckGo web search
|
| 93 |
+
- Semantic search via ChromaDB (Phase 6)
|
| 94 |
+
- Evidence deduplication
|
| 95 |
+
|
| 96 |
+
3. **HypothesisAgent (Phase 7)**
|
| 97 |
+
- Generates Drug β Target β Pathway β Effect hypotheses
|
| 98 |
+
- Guides targeted searches
|
| 99 |
+
- Scientific reasoning about mechanisms
|
| 100 |
+
|
| 101 |
+
4. **JudgeAgent (Phase 3+5)**
|
| 102 |
+
- LLM-based evidence assessment
|
| 103 |
+
- Mechanism score + Clinical score
|
| 104 |
+
- Recommends continue/synthesize
|
| 105 |
+
- Generates refined search queries
|
| 106 |
+
|
| 107 |
+
5. **ReportAgent (Phase 8)**
|
| 108 |
+
- Structured scientific reports
|
| 109 |
+
- Executive summary, methodology
|
| 110 |
+
- Hypotheses tested with evidence counts
|
| 111 |
+
- Proper citations and limitations
|
| 112 |
+
|
| 113 |
+
6. **Gradio UI (Phase 4)**
|
| 114 |
+
- Chat interface for questions
|
| 115 |
+
- Real-time progress via events
|
| 116 |
+
- Mode toggle (Simple/Magentic)
|
| 117 |
+
- Formatted markdown output
|
| 118 |
|
| 119 |
---
|
| 120 |
|
|
|
|
| 280 |
|
| 281 |
## Success Criteria
|
| 282 |
|
| 283 |
+
### Phase 1-5 (MVP) β
COMPLETE
|
| 284 |
+
**Completed in ONE DAY:**
|
| 285 |
- [x] User can ask drug repurposing question
|
| 286 |
+
- [x] Agent searches PubMed (async)
|
| 287 |
+
- [x] Agent searches web (DuckDuckGo)
|
| 288 |
+
- [x] LLM judge evaluates evidence quality
|
| 289 |
+
- [x] System respects token budget and iterations
|
| 290 |
+
- [x] Output includes drug candidates + citations
|
| 291 |
+
- [x] Works end-to-end for demo query
|
| 292 |
+
- [x] Gradio UI with streaming progress
|
| 293 |
+
- [x] Magentic multi-agent orchestration
|
| 294 |
+
- [x] 38 unit tests passing
|
| 295 |
+
- [x] CI/CD pipeline green
|
| 296 |
+
|
| 297 |
+
### Hackathon Submission β
COMPLETE
|
| 298 |
+
- [x] Gradio UI deployed on HuggingFace Spaces
|
| 299 |
+
- [x] Example queries working and tested
|
| 300 |
+
- [x] Architecture documentation
|
| 301 |
+
- [x] README with setup instructions
|
| 302 |
+
|
| 303 |
+
### Phase 6-8 (Enhanced)
|
| 304 |
+
**Specs ready for implementation:**
|
| 305 |
+
- [ ] Embeddings & Semantic Search (Phase 6)
|
| 306 |
+
- [ ] Hypothesis Agent (Phase 7)
|
| 307 |
+
- [ ] Report Agent (Phase 8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
### What's EXPLICITLY Out of Scope
|
| 310 |
**NOT building (to stay focused):**
|
docs/implementation/06_phase_embeddings.md
ADDED
|
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Phase 6 Implementation Spec: Embeddings & Semantic Search
|
| 2 |
+
|
| 3 |
+
**Goal**: Add vector search for semantic evidence retrieval.
|
| 4 |
+
**Philosophy**: "Find what you mean, not just what you type."
|
| 5 |
+
**Prerequisite**: Phase 5 complete (Magentic working)
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 1. Why Embeddings?
|
| 10 |
+
|
| 11 |
+
Current limitation: **Keyword-only search misses semantically related papers.**
|
| 12 |
+
|
| 13 |
+
Example problem:
|
| 14 |
+
- User searches: "metformin alzheimer"
|
| 15 |
+
- PubMed returns: Papers with exact keywords
|
| 16 |
+
- MISSED: Papers about "AMPK activation neuroprotection" (same mechanism, different words)
|
| 17 |
+
|
| 18 |
+
With embeddings:
|
| 19 |
+
- Embed the query AND all evidence
|
| 20 |
+
- Find semantically similar papers even without keyword match
|
| 21 |
+
- Deduplicate by meaning, not just URL
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## 2. Architecture
|
| 26 |
+
|
| 27 |
+
### Current (Phase 5)
|
| 28 |
+
```
|
| 29 |
+
Query β SearchAgent β PubMed/Web (keyword) β Evidence
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
### Phase 6
|
| 33 |
+
```
|
| 34 |
+
Query β Embed(Query) β SearchAgent
|
| 35 |
+
βββ PubMed/Web (keyword) β Evidence
|
| 36 |
+
βββ VectorDB (semantic) β Related Evidence
|
| 37 |
+
β
|
| 38 |
+
Evidence β Embed β Store
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### Shared Context Enhancement
|
| 42 |
+
```python
|
| 43 |
+
# Current
|
| 44 |
+
evidence_store = {"current": []}
|
| 45 |
+
|
| 46 |
+
# Phase 6
|
| 47 |
+
evidence_store = {
|
| 48 |
+
"current": [], # Raw evidence
|
| 49 |
+
"embeddings": {}, # URL -> embedding vector
|
| 50 |
+
"vector_index": None, # ChromaDB collection
|
| 51 |
+
}
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## 3. Technology Choice
|
| 57 |
+
|
| 58 |
+
### ChromaDB (Recommended)
|
| 59 |
+
- **Free**, open-source, local-first
|
| 60 |
+
- No API keys, no cloud dependency
|
| 61 |
+
- Supports sentence-transformers out of the box
|
| 62 |
+
- Perfect for hackathon (no infra setup)
|
| 63 |
+
|
| 64 |
+
### Embedding Model
|
| 65 |
+
- `sentence-transformers/all-MiniLM-L6-v2` (fast, good quality)
|
| 66 |
+
- Or `BAAI/bge-small-en-v1.5` (better quality, still fast)
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
## 4. Implementation
|
| 71 |
+
|
| 72 |
+
### 4.1 Dependencies
|
| 73 |
+
|
| 74 |
+
Add to `pyproject.toml`:
|
| 75 |
+
```toml
|
| 76 |
+
[project.optional-dependencies]
|
| 77 |
+
embeddings = [
|
| 78 |
+
"chromadb>=0.4.0",
|
| 79 |
+
"sentence-transformers>=2.2.0",
|
| 80 |
+
]
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
### 4.2 Embedding Service (`src/services/embeddings.py`)
|
| 84 |
+
|
| 85 |
+
> **CRITICAL: Async Pattern Required**
|
| 86 |
+
>
|
| 87 |
+
> `sentence-transformers` is synchronous and CPU-bound. Running it directly in async code
|
| 88 |
+
> will **block the event loop**, freezing the UI and halting all concurrent operations.
|
| 89 |
+
>
|
| 90 |
+
> **Solution**: Use `asyncio.run_in_executor()` to offload to thread pool.
|
| 91 |
+
> This pattern already exists in `src/tools/websearch.py:28-34`.
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
"""Embedding service for semantic search.
|
| 95 |
+
|
| 96 |
+
IMPORTANT: All public methods are async to avoid blocking the event loop.
|
| 97 |
+
The sentence-transformers model is CPU-bound, so we use run_in_executor().
|
| 98 |
+
"""
|
| 99 |
+
import asyncio
|
| 100 |
+
from typing import List
|
| 101 |
+
|
| 102 |
+
import chromadb
|
| 103 |
+
from sentence_transformers import SentenceTransformer
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class EmbeddingService:
|
| 107 |
+
"""Handles text embedding and vector storage.
|
| 108 |
+
|
| 109 |
+
All embedding operations run in a thread pool to avoid blocking
|
| 110 |
+
the async event loop. See src/tools/websearch.py for the pattern.
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
|
| 114 |
+
self._model = SentenceTransformer(model_name)
|
| 115 |
+
self._client = chromadb.Client() # In-memory for hackathon
|
| 116 |
+
self._collection = self._client.create_collection(
|
| 117 |
+
name="evidence",
|
| 118 |
+
metadata={"hnsw:space": "cosine"}
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 122 |
+
# Sync internal methods (run in thread pool)
|
| 123 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 124 |
+
|
| 125 |
+
def _sync_embed(self, text: str) -> List[float]:
|
| 126 |
+
"""Synchronous embedding - DO NOT call directly from async code."""
|
| 127 |
+
return self._model.encode(text).tolist()
|
| 128 |
+
|
| 129 |
+
def _sync_batch_embed(self, texts: List[str]) -> List[List[float]]:
|
| 130 |
+
"""Batch embedding for efficiency - DO NOT call directly from async code."""
|
| 131 |
+
return [e.tolist() for e in self._model.encode(texts)]
|
| 132 |
+
|
| 133 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 134 |
+
# Async public methods (safe for event loop)
|
| 135 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 136 |
+
|
| 137 |
+
async def embed(self, text: str) -> List[float]:
|
| 138 |
+
"""Embed a single text (async-safe).
|
| 139 |
+
|
| 140 |
+
Uses run_in_executor to avoid blocking the event loop.
|
| 141 |
+
"""
|
| 142 |
+
loop = asyncio.get_running_loop()
|
| 143 |
+
return await loop.run_in_executor(None, self._sync_embed, text)
|
| 144 |
+
|
| 145 |
+
async def embed_batch(self, texts: List[str]) -> List[List[float]]:
|
| 146 |
+
"""Batch embed multiple texts (async-safe, more efficient)."""
|
| 147 |
+
loop = asyncio.get_running_loop()
|
| 148 |
+
return await loop.run_in_executor(None, self._sync_batch_embed, texts)
|
| 149 |
+
|
| 150 |
+
async def add_evidence(self, evidence_id: str, content: str, metadata: dict) -> None:
|
| 151 |
+
"""Add evidence to vector store (async-safe)."""
|
| 152 |
+
embedding = await self.embed(content)
|
| 153 |
+
# ChromaDB operations are fast, but wrap for consistency
|
| 154 |
+
loop = asyncio.get_running_loop()
|
| 155 |
+
await loop.run_in_executor(
|
| 156 |
+
None,
|
| 157 |
+
lambda: self._collection.add(
|
| 158 |
+
ids=[evidence_id],
|
| 159 |
+
embeddings=[embedding],
|
| 160 |
+
metadatas=[metadata],
|
| 161 |
+
documents=[content]
|
| 162 |
+
)
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
async def search_similar(self, query: str, n_results: int = 5) -> List[dict]:
|
| 166 |
+
"""Find semantically similar evidence (async-safe)."""
|
| 167 |
+
query_embedding = await self.embed(query)
|
| 168 |
+
|
| 169 |
+
loop = asyncio.get_running_loop()
|
| 170 |
+
results = await loop.run_in_executor(
|
| 171 |
+
None,
|
| 172 |
+
lambda: self._collection.query(
|
| 173 |
+
query_embeddings=[query_embedding],
|
| 174 |
+
n_results=n_results
|
| 175 |
+
)
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Handle empty results gracefully
|
| 179 |
+
if not results["ids"] or not results["ids"][0]:
|
| 180 |
+
return []
|
| 181 |
+
|
| 182 |
+
return [
|
| 183 |
+
{"id": id, "content": doc, "metadata": meta, "distance": dist}
|
| 184 |
+
for id, doc, meta, dist in zip(
|
| 185 |
+
results["ids"][0],
|
| 186 |
+
results["documents"][0],
|
| 187 |
+
results["metadatas"][0],
|
| 188 |
+
results["distances"][0]
|
| 189 |
+
)
|
| 190 |
+
]
|
| 191 |
+
|
| 192 |
+
async def deduplicate(self, new_evidence: List, threshold: float = 0.9) -> List:
|
| 193 |
+
"""Remove semantically duplicate evidence (async-safe)."""
|
| 194 |
+
unique = []
|
| 195 |
+
for evidence in new_evidence:
|
| 196 |
+
similar = await self.search_similar(evidence.content, n_results=1)
|
| 197 |
+
if not similar or similar[0]["distance"] > (1 - threshold):
|
| 198 |
+
unique.append(evidence)
|
| 199 |
+
await self.add_evidence(
|
| 200 |
+
evidence_id=evidence.citation.url,
|
| 201 |
+
content=evidence.content,
|
| 202 |
+
metadata={"source": evidence.citation.source}
|
| 203 |
+
)
|
| 204 |
+
return unique
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
### 4.3 Enhanced SearchAgent (`src/agents/search_agent.py`)
|
| 208 |
+
|
| 209 |
+
Update SearchAgent to use embeddings. **Note**: All embedding calls are `await`ed:
|
| 210 |
+
|
| 211 |
+
```python
|
| 212 |
+
class SearchAgent(BaseAgent):
|
| 213 |
+
def __init__(
|
| 214 |
+
self,
|
| 215 |
+
search_handler: SearchHandlerProtocol,
|
| 216 |
+
evidence_store: dict,
|
| 217 |
+
embedding_service: EmbeddingService | None = None, # NEW
|
| 218 |
+
):
|
| 219 |
+
# ... existing init ...
|
| 220 |
+
self._embeddings = embedding_service
|
| 221 |
+
|
| 222 |
+
async def run(self, messages, *, thread=None, **kwargs) -> AgentRunResponse:
|
| 223 |
+
# ... extract query ...
|
| 224 |
+
|
| 225 |
+
# Execute keyword search
|
| 226 |
+
result = await self._handler.execute(query, max_results_per_tool=10)
|
| 227 |
+
|
| 228 |
+
# Semantic deduplication (NEW) - ALL CALLS ARE AWAITED
|
| 229 |
+
if self._embeddings:
|
| 230 |
+
# Deduplicate by semantic similarity (async-safe)
|
| 231 |
+
unique_evidence = await self._embeddings.deduplicate(result.evidence)
|
| 232 |
+
|
| 233 |
+
# Also search for semantically related evidence (async-safe)
|
| 234 |
+
related = await self._embeddings.search_similar(query, n_results=5)
|
| 235 |
+
|
| 236 |
+
# Merge related evidence not already in results
|
| 237 |
+
existing_urls = {e.citation.url for e in unique_evidence}
|
| 238 |
+
for item in related:
|
| 239 |
+
if item["id"] not in existing_urls:
|
| 240 |
+
# Reconstruct Evidence from stored data
|
| 241 |
+
# ... merge logic ...
|
| 242 |
+
|
| 243 |
+
# ... rest of method ...
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
### 4.4 Semantic Expansion in Orchestrator
|
| 247 |
+
|
| 248 |
+
The MagenticOrchestrator can use embeddings to expand queries:
|
| 249 |
+
|
| 250 |
+
```python
|
| 251 |
+
# In task instruction
|
| 252 |
+
task = f"""Research drug repurposing opportunities for: {query}
|
| 253 |
+
|
| 254 |
+
The system has semantic search enabled. When evidence is found:
|
| 255 |
+
1. Related concepts will be automatically surfaced
|
| 256 |
+
2. Duplicates are removed by meaning, not just URL
|
| 257 |
+
3. Use the surfaced related concepts to refine searches
|
| 258 |
+
"""
|
| 259 |
+
```
|
| 260 |
+
|
| 261 |
+
### 4.5 HuggingFace Spaces Deployment
|
| 262 |
+
|
| 263 |
+
> **β οΈ Important for HF Spaces**
|
| 264 |
+
>
|
| 265 |
+
> `sentence-transformers` downloads models (~500MB) to `~/.cache` on first use.
|
| 266 |
+
> HuggingFace Spaces have **ephemeral storage** - the cache is wiped on restart.
|
| 267 |
+
> This causes slow cold starts and bandwidth usage.
|
| 268 |
+
|
| 269 |
+
**Solution**: Pre-download the model in your Dockerfile:
|
| 270 |
+
|
| 271 |
+
```dockerfile
|
| 272 |
+
# In Dockerfile
|
| 273 |
+
FROM python:3.11-slim
|
| 274 |
+
|
| 275 |
+
# Set cache directory
|
| 276 |
+
ENV HF_HOME=/app/.cache
|
| 277 |
+
ENV TRANSFORMERS_CACHE=/app/.cache
|
| 278 |
+
|
| 279 |
+
# Pre-download the embedding model during build
|
| 280 |
+
RUN pip install sentence-transformers && \
|
| 281 |
+
python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('all-MiniLM-L6-v2')"
|
| 282 |
+
|
| 283 |
+
# ... rest of Dockerfile
|
| 284 |
+
```
|
| 285 |
+
|
| 286 |
+
**Alternative**: Use environment variable to specify persistent path:
|
| 287 |
+
|
| 288 |
+
```yaml
|
| 289 |
+
# In HF Spaces settings or app.yaml
|
| 290 |
+
env:
|
| 291 |
+
- name: HF_HOME
|
| 292 |
+
value: /data/.cache # Persistent volume
|
| 293 |
+
```
|
| 294 |
+
|
| 295 |
+
---
|
| 296 |
+
|
| 297 |
+
## 5. Directory Structure After Phase 6
|
| 298 |
+
|
| 299 |
+
```
|
| 300 |
+
src/
|
| 301 |
+
βββ services/ # NEW
|
| 302 |
+
β βββ __init__.py
|
| 303 |
+
β βββ embeddings.py # EmbeddingService
|
| 304 |
+
βββ agents/
|
| 305 |
+
β βββ search_agent.py # Updated with embeddings
|
| 306 |
+
β βββ judge_agent.py
|
| 307 |
+
βββ ...
|
| 308 |
+
```
|
| 309 |
+
|
| 310 |
+
---
|
| 311 |
+
|
| 312 |
+
## 6. Tests
|
| 313 |
+
|
| 314 |
+
### 6.1 Unit Tests (`tests/unit/services/test_embeddings.py`)
|
| 315 |
+
|
| 316 |
+
> **Note**: All tests are async since the EmbeddingService methods are async.
|
| 317 |
+
|
| 318 |
+
```python
|
| 319 |
+
"""Unit tests for EmbeddingService."""
|
| 320 |
+
import pytest
|
| 321 |
+
from src.services.embeddings import EmbeddingService
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
class TestEmbeddingService:
|
| 325 |
+
@pytest.mark.asyncio
|
| 326 |
+
async def test_embed_returns_vector(self):
|
| 327 |
+
"""Embedding should return a float vector."""
|
| 328 |
+
service = EmbeddingService()
|
| 329 |
+
embedding = await service.embed("metformin diabetes")
|
| 330 |
+
assert isinstance(embedding, list)
|
| 331 |
+
assert len(embedding) > 0
|
| 332 |
+
assert all(isinstance(x, float) for x in embedding)
|
| 333 |
+
|
| 334 |
+
@pytest.mark.asyncio
|
| 335 |
+
async def test_similar_texts_have_close_embeddings(self):
|
| 336 |
+
"""Semantically similar texts should have similar embeddings."""
|
| 337 |
+
service = EmbeddingService()
|
| 338 |
+
e1 = await service.embed("metformin treats diabetes")
|
| 339 |
+
e2 = await service.embed("metformin is used for diabetes treatment")
|
| 340 |
+
e3 = await service.embed("the weather is sunny today")
|
| 341 |
+
|
| 342 |
+
# Cosine similarity helper
|
| 343 |
+
from numpy import dot
|
| 344 |
+
from numpy.linalg import norm
|
| 345 |
+
cosine = lambda a, b: dot(a, b) / (norm(a) * norm(b))
|
| 346 |
+
|
| 347 |
+
# Similar texts should be closer
|
| 348 |
+
assert cosine(e1, e2) > cosine(e1, e3)
|
| 349 |
+
|
| 350 |
+
@pytest.mark.asyncio
|
| 351 |
+
async def test_batch_embed_efficient(self):
|
| 352 |
+
"""Batch embedding should be more efficient than individual calls."""
|
| 353 |
+
service = EmbeddingService()
|
| 354 |
+
texts = ["text one", "text two", "text three"]
|
| 355 |
+
|
| 356 |
+
# Batch embed
|
| 357 |
+
batch_results = await service.embed_batch(texts)
|
| 358 |
+
assert len(batch_results) == 3
|
| 359 |
+
assert all(isinstance(e, list) for e in batch_results)
|
| 360 |
+
|
| 361 |
+
@pytest.mark.asyncio
|
| 362 |
+
async def test_add_and_search(self):
|
| 363 |
+
"""Should be able to add evidence and search for similar."""
|
| 364 |
+
service = EmbeddingService()
|
| 365 |
+
await service.add_evidence(
|
| 366 |
+
evidence_id="test1",
|
| 367 |
+
content="Metformin activates AMPK pathway",
|
| 368 |
+
metadata={"source": "pubmed"}
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
results = await service.search_similar("AMPK activation drugs", n_results=1)
|
| 372 |
+
assert len(results) == 1
|
| 373 |
+
assert "AMPK" in results[0]["content"]
|
| 374 |
+
|
| 375 |
+
@pytest.mark.asyncio
|
| 376 |
+
async def test_search_similar_empty_collection(self):
|
| 377 |
+
"""Search on empty collection should return empty list, not error."""
|
| 378 |
+
service = EmbeddingService()
|
| 379 |
+
results = await service.search_similar("anything", n_results=5)
|
| 380 |
+
assert results == []
|
| 381 |
+
```
|
| 382 |
+
|
| 383 |
+
---
|
| 384 |
+
|
| 385 |
+
## 7. Definition of Done
|
| 386 |
+
|
| 387 |
+
Phase 6 is **COMPLETE** when:
|
| 388 |
+
|
| 389 |
+
1. `EmbeddingService` implemented with ChromaDB
|
| 390 |
+
2. SearchAgent uses embeddings for deduplication
|
| 391 |
+
3. Semantic search surfaces related evidence
|
| 392 |
+
4. All unit tests pass
|
| 393 |
+
5. Integration test shows improved recall (finds related papers)
|
| 394 |
+
|
| 395 |
+
---
|
| 396 |
+
|
| 397 |
+
## 8. Value Delivered
|
| 398 |
+
|
| 399 |
+
| Before (Phase 5) | After (Phase 6) |
|
| 400 |
+
|------------------|-----------------|
|
| 401 |
+
| Keyword-only search | Semantic + keyword search |
|
| 402 |
+
| URL-based deduplication | Meaning-based deduplication |
|
| 403 |
+
| Miss related papers | Surface related concepts |
|
| 404 |
+
| Exact match required | Fuzzy semantic matching |
|
| 405 |
+
|
| 406 |
+
**Real example improvement:**
|
| 407 |
+
- Query: "metformin alzheimer"
|
| 408 |
+
- Before: Only papers mentioning both words
|
| 409 |
+
- After: Also finds "AMPK neuroprotection", "biguanide cognitive", etc.
|
docs/implementation/07_phase_hypothesis.md
ADDED
|
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Phase 7 Implementation Spec: Hypothesis Agent
|
| 2 |
+
|
| 3 |
+
**Goal**: Add an agent that generates scientific hypotheses to guide targeted searches.
|
| 4 |
+
**Philosophy**: "Don't just find evidenceβunderstand the mechanisms."
|
| 5 |
+
**Prerequisite**: Phase 6 complete (Embeddings working)
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 1. Why Hypothesis Agent?
|
| 10 |
+
|
| 11 |
+
Current limitation: **Search is reactive, not hypothesis-driven.**
|
| 12 |
+
|
| 13 |
+
Current flow:
|
| 14 |
+
1. User asks about "metformin alzheimer"
|
| 15 |
+
2. Search finds papers
|
| 16 |
+
3. Judge says "need more evidence"
|
| 17 |
+
4. Search again with slightly different keywords
|
| 18 |
+
|
| 19 |
+
With Hypothesis Agent:
|
| 20 |
+
1. User asks about "metformin alzheimer"
|
| 21 |
+
2. Search finds initial papers
|
| 22 |
+
3. **Hypothesis Agent analyzes**: "Evidence suggests metformin β AMPK activation β autophagy β amyloid clearance"
|
| 23 |
+
4. Search can now target: "metformin AMPK", "autophagy neurodegeneration", "amyloid clearance drugs"
|
| 24 |
+
|
| 25 |
+
**Key insight**: Scientific research is hypothesis-driven. The agent should think like a researcher.
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## 2. Architecture
|
| 30 |
+
|
| 31 |
+
### Current (Phase 6)
|
| 32 |
+
```
|
| 33 |
+
User Query β Magentic Manager
|
| 34 |
+
βββ SearchAgent β Evidence
|
| 35 |
+
βββ JudgeAgent β Sufficient? β Synthesize/Continue
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
### Phase 7
|
| 39 |
+
```
|
| 40 |
+
User Query β Magentic Manager
|
| 41 |
+
βββ SearchAgent β Evidence
|
| 42 |
+
βββ HypothesisAgent β Mechanistic Hypotheses β NEW
|
| 43 |
+
βββ JudgeAgent β Sufficient? β Synthesize/Continue
|
| 44 |
+
β
|
| 45 |
+
Uses hypotheses to guide next search
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Shared Context Enhancement
|
| 49 |
+
```python
|
| 50 |
+
evidence_store = {
|
| 51 |
+
"current": [],
|
| 52 |
+
"embeddings": {},
|
| 53 |
+
"vector_index": None,
|
| 54 |
+
"hypotheses": [], # NEW: Generated hypotheses
|
| 55 |
+
"tested_hypotheses": [], # NEW: Hypotheses with supporting/contradicting evidence
|
| 56 |
+
}
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## 3. Hypothesis Model
|
| 62 |
+
|
| 63 |
+
### 3.1 Data Model (`src/utils/models.py`)
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
class MechanismHypothesis(BaseModel):
|
| 67 |
+
"""A scientific hypothesis about drug mechanism."""
|
| 68 |
+
|
| 69 |
+
drug: str = Field(description="The drug being studied")
|
| 70 |
+
target: str = Field(description="Molecular target (e.g., AMPK, mTOR)")
|
| 71 |
+
pathway: str = Field(description="Biological pathway affected")
|
| 72 |
+
effect: str = Field(description="Downstream effect on disease")
|
| 73 |
+
confidence: float = Field(ge=0, le=1, description="Confidence in hypothesis")
|
| 74 |
+
supporting_evidence: list[str] = Field(
|
| 75 |
+
default_factory=list,
|
| 76 |
+
description="PMIDs or URLs supporting this hypothesis"
|
| 77 |
+
)
|
| 78 |
+
contradicting_evidence: list[str] = Field(
|
| 79 |
+
default_factory=list,
|
| 80 |
+
description="PMIDs or URLs contradicting this hypothesis"
|
| 81 |
+
)
|
| 82 |
+
search_suggestions: list[str] = Field(
|
| 83 |
+
default_factory=list,
|
| 84 |
+
description="Suggested searches to test this hypothesis"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def to_search_queries(self) -> list[str]:
|
| 88 |
+
"""Generate search queries to test this hypothesis."""
|
| 89 |
+
return [
|
| 90 |
+
f"{self.drug} {self.target}",
|
| 91 |
+
f"{self.target} {self.pathway}",
|
| 92 |
+
f"{self.pathway} {self.effect}",
|
| 93 |
+
*self.search_suggestions
|
| 94 |
+
]
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### 3.2 Hypothesis Assessment
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
class HypothesisAssessment(BaseModel):
|
| 101 |
+
"""Assessment of evidence against hypotheses."""
|
| 102 |
+
|
| 103 |
+
hypotheses: list[MechanismHypothesis]
|
| 104 |
+
primary_hypothesis: MechanismHypothesis | None = Field(
|
| 105 |
+
description="Most promising hypothesis based on current evidence"
|
| 106 |
+
)
|
| 107 |
+
knowledge_gaps: list[str] = Field(
|
| 108 |
+
description="What we don't know yet"
|
| 109 |
+
)
|
| 110 |
+
recommended_searches: list[str] = Field(
|
| 111 |
+
description="Searches to fill knowledge gaps"
|
| 112 |
+
)
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
## 4. Implementation
|
| 118 |
+
|
| 119 |
+
### 4.0 Text Utilities (`src/utils/text_utils.py`)
|
| 120 |
+
|
| 121 |
+
> **Why These Utilities?**
|
| 122 |
+
>
|
| 123 |
+
> The original spec used arbitrary truncation (`evidence[:10]` and `content[:300]`).
|
| 124 |
+
> This loses important information randomly. These utilities provide:
|
| 125 |
+
> 1. **Sentence-aware truncation** - cuts at sentence boundaries, not mid-word
|
| 126 |
+
> 2. **Diverse evidence selection** - uses embeddings to select varied evidence (MMR)
|
| 127 |
+
|
| 128 |
+
```python
|
| 129 |
+
"""Text processing utilities for evidence handling."""
|
| 130 |
+
from typing import TYPE_CHECKING
|
| 131 |
+
|
| 132 |
+
if TYPE_CHECKING:
|
| 133 |
+
from src.services.embeddings import EmbeddingService
|
| 134 |
+
from src.utils.models import Evidence
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def truncate_at_sentence(text: str, max_chars: int = 300) -> str:
|
| 138 |
+
"""Truncate text at sentence boundary, preserving meaning.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
text: The text to truncate
|
| 142 |
+
max_chars: Maximum characters (default 300)
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
Text truncated at last complete sentence within limit
|
| 146 |
+
"""
|
| 147 |
+
if len(text) <= max_chars:
|
| 148 |
+
return text
|
| 149 |
+
|
| 150 |
+
# Find truncation point
|
| 151 |
+
truncated = text[:max_chars]
|
| 152 |
+
|
| 153 |
+
# Look for sentence endings: . ! ? followed by space or end
|
| 154 |
+
for sep in ['. ', '! ', '? ', '.\n', '!\n', '?\n']:
|
| 155 |
+
last_sep = truncated.rfind(sep)
|
| 156 |
+
if last_sep > max_chars // 2: # Don't truncate too aggressively
|
| 157 |
+
return text[:last_sep + 1].strip()
|
| 158 |
+
|
| 159 |
+
# Fallback: find last period
|
| 160 |
+
last_period = truncated.rfind('.')
|
| 161 |
+
if last_period > max_chars // 2:
|
| 162 |
+
return text[:last_period + 1].strip()
|
| 163 |
+
|
| 164 |
+
# Last resort: truncate at word boundary
|
| 165 |
+
last_space = truncated.rfind(' ')
|
| 166 |
+
if last_space > 0:
|
| 167 |
+
return text[:last_space].strip() + "..."
|
| 168 |
+
|
| 169 |
+
return truncated + "..."
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
async def select_diverse_evidence(
|
| 173 |
+
evidence: list["Evidence"],
|
| 174 |
+
n: int,
|
| 175 |
+
query: str,
|
| 176 |
+
embeddings: "EmbeddingService | None" = None
|
| 177 |
+
) -> list["Evidence"]:
|
| 178 |
+
"""Select n most diverse and relevant evidence items.
|
| 179 |
+
|
| 180 |
+
Uses Maximal Marginal Relevance (MMR) when embeddings available,
|
| 181 |
+
falls back to relevance_score sorting otherwise.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
evidence: All available evidence
|
| 185 |
+
n: Number of items to select
|
| 186 |
+
query: Original query for relevance scoring
|
| 187 |
+
embeddings: Optional EmbeddingService for semantic diversity
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
Selected evidence items, diverse and relevant
|
| 191 |
+
"""
|
| 192 |
+
if not evidence:
|
| 193 |
+
return []
|
| 194 |
+
|
| 195 |
+
if n >= len(evidence):
|
| 196 |
+
return evidence
|
| 197 |
+
|
| 198 |
+
# Fallback: sort by relevance score if no embeddings
|
| 199 |
+
if embeddings is None:
|
| 200 |
+
return sorted(
|
| 201 |
+
evidence,
|
| 202 |
+
key=lambda e: e.relevance_score,
|
| 203 |
+
reverse=True
|
| 204 |
+
)[:n]
|
| 205 |
+
|
| 206 |
+
# MMR: Maximal Marginal Relevance for diverse selection
|
| 207 |
+
# Score = Ξ» * relevance - (1-Ξ») * max_similarity_to_selected
|
| 208 |
+
lambda_param = 0.7 # Balance relevance vs diversity
|
| 209 |
+
|
| 210 |
+
# Get query embedding
|
| 211 |
+
query_emb = await embeddings.embed(query)
|
| 212 |
+
|
| 213 |
+
# Get all evidence embeddings
|
| 214 |
+
evidence_embs = await embeddings.embed_batch([e.content for e in evidence])
|
| 215 |
+
|
| 216 |
+
# Compute relevance scores (cosine similarity to query)
|
| 217 |
+
from numpy import dot
|
| 218 |
+
from numpy.linalg import norm
|
| 219 |
+
cosine = lambda a, b: float(dot(a, b) / (norm(a) * norm(b)))
|
| 220 |
+
|
| 221 |
+
relevance_scores = [cosine(query_emb, emb) for emb in evidence_embs]
|
| 222 |
+
|
| 223 |
+
# Greedy MMR selection
|
| 224 |
+
selected_indices: list[int] = []
|
| 225 |
+
remaining = set(range(len(evidence)))
|
| 226 |
+
|
| 227 |
+
for _ in range(n):
|
| 228 |
+
best_score = float('-inf')
|
| 229 |
+
best_idx = -1
|
| 230 |
+
|
| 231 |
+
for idx in remaining:
|
| 232 |
+
# Relevance component
|
| 233 |
+
relevance = relevance_scores[idx]
|
| 234 |
+
|
| 235 |
+
# Diversity component: max similarity to already selected
|
| 236 |
+
if selected_indices:
|
| 237 |
+
max_sim = max(
|
| 238 |
+
cosine(evidence_embs[idx], evidence_embs[sel])
|
| 239 |
+
for sel in selected_indices
|
| 240 |
+
)
|
| 241 |
+
else:
|
| 242 |
+
max_sim = 0
|
| 243 |
+
|
| 244 |
+
# MMR score
|
| 245 |
+
mmr_score = lambda_param * relevance - (1 - lambda_param) * max_sim
|
| 246 |
+
|
| 247 |
+
if mmr_score > best_score:
|
| 248 |
+
best_score = mmr_score
|
| 249 |
+
best_idx = idx
|
| 250 |
+
|
| 251 |
+
if best_idx >= 0:
|
| 252 |
+
selected_indices.append(best_idx)
|
| 253 |
+
remaining.remove(best_idx)
|
| 254 |
+
|
| 255 |
+
return [evidence[i] for i in selected_indices]
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
### 4.1 Hypothesis Prompts (`src/prompts/hypothesis.py`)
|
| 259 |
+
|
| 260 |
+
```python
|
| 261 |
+
"""Prompts for Hypothesis Agent."""
|
| 262 |
+
from src.utils.text_utils import truncate_at_sentence, select_diverse_evidence
|
| 263 |
+
|
| 264 |
+
SYSTEM_PROMPT = """You are a biomedical research scientist specializing in drug repurposing.
|
| 265 |
+
|
| 266 |
+
Your role is to generate mechanistic hypotheses based on evidence.
|
| 267 |
+
|
| 268 |
+
A good hypothesis:
|
| 269 |
+
1. Proposes a MECHANISM: Drug β Target β Pathway β Effect
|
| 270 |
+
2. Is TESTABLE: Can be supported or refuted by literature search
|
| 271 |
+
3. Is SPECIFIC: Names actual molecular targets and pathways
|
| 272 |
+
4. Generates SEARCH QUERIES: Helps find more evidence
|
| 273 |
+
|
| 274 |
+
Example hypothesis format:
|
| 275 |
+
- Drug: Metformin
|
| 276 |
+
- Target: AMPK (AMP-activated protein kinase)
|
| 277 |
+
- Pathway: mTOR inhibition β autophagy activation
|
| 278 |
+
- Effect: Enhanced clearance of amyloid-beta in Alzheimer's
|
| 279 |
+
- Confidence: 0.7
|
| 280 |
+
- Search suggestions: ["metformin AMPK brain", "autophagy amyloid clearance"]
|
| 281 |
+
|
| 282 |
+
Be specific. Use actual gene/protein names when possible."""
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
async def format_hypothesis_prompt(
|
| 286 |
+
query: str,
|
| 287 |
+
evidence: list,
|
| 288 |
+
embeddings=None
|
| 289 |
+
) -> str:
|
| 290 |
+
"""Format prompt for hypothesis generation.
|
| 291 |
+
|
| 292 |
+
Uses smart evidence selection instead of arbitrary truncation.
|
| 293 |
+
|
| 294 |
+
Args:
|
| 295 |
+
query: The research query
|
| 296 |
+
evidence: All collected evidence
|
| 297 |
+
embeddings: Optional EmbeddingService for diverse selection
|
| 298 |
+
"""
|
| 299 |
+
# Select diverse, relevant evidence (not arbitrary first 10)
|
| 300 |
+
selected = await select_diverse_evidence(
|
| 301 |
+
evidence, n=10, query=query, embeddings=embeddings
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Format with sentence-aware truncation
|
| 305 |
+
evidence_text = "\n".join([
|
| 306 |
+
f"- **{e.citation.title}** ({e.citation.source}): {truncate_at_sentence(e.content, 300)}"
|
| 307 |
+
for e in selected
|
| 308 |
+
])
|
| 309 |
+
|
| 310 |
+
return f"""Based on the following evidence about "{query}", generate mechanistic hypotheses.
|
| 311 |
+
|
| 312 |
+
## Evidence ({len(selected)} papers selected for diversity)
|
| 313 |
+
{evidence_text}
|
| 314 |
+
|
| 315 |
+
## Task
|
| 316 |
+
1. Identify potential drug targets mentioned in the evidence
|
| 317 |
+
2. Propose mechanism hypotheses (Drug β Target β Pathway β Effect)
|
| 318 |
+
3. Rate confidence based on evidence strength
|
| 319 |
+
4. Suggest searches to test each hypothesis
|
| 320 |
+
|
| 321 |
+
Generate 2-4 hypotheses, prioritized by confidence."""
|
| 322 |
+
```
|
| 323 |
+
|
| 324 |
+
### 4.2 Hypothesis Agent (`src/agents/hypothesis_agent.py`)
|
| 325 |
+
|
| 326 |
+
```python
|
| 327 |
+
"""Hypothesis agent for mechanistic reasoning."""
|
| 328 |
+
from collections.abc import AsyncIterable
|
| 329 |
+
from typing import TYPE_CHECKING, Any
|
| 330 |
+
|
| 331 |
+
from agent_framework import (
|
| 332 |
+
AgentRunResponse,
|
| 333 |
+
AgentRunResponseUpdate,
|
| 334 |
+
AgentThread,
|
| 335 |
+
BaseAgent,
|
| 336 |
+
ChatMessage,
|
| 337 |
+
Role,
|
| 338 |
+
)
|
| 339 |
+
from pydantic_ai import Agent
|
| 340 |
+
|
| 341 |
+
from src.prompts.hypothesis import SYSTEM_PROMPT, format_hypothesis_prompt
|
| 342 |
+
from src.utils.config import settings
|
| 343 |
+
from src.utils.models import Evidence, HypothesisAssessment
|
| 344 |
+
|
| 345 |
+
if TYPE_CHECKING:
|
| 346 |
+
from src.services.embeddings import EmbeddingService
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
class HypothesisAgent(BaseAgent):
|
| 350 |
+
"""Generates mechanistic hypotheses based on evidence."""
|
| 351 |
+
|
| 352 |
+
def __init__(
|
| 353 |
+
self,
|
| 354 |
+
evidence_store: dict[str, list[Evidence]],
|
| 355 |
+
embedding_service: "EmbeddingService | None" = None, # NEW: for diverse selection
|
| 356 |
+
) -> None:
|
| 357 |
+
super().__init__(
|
| 358 |
+
name="HypothesisAgent",
|
| 359 |
+
description="Generates scientific hypotheses about drug mechanisms to guide research",
|
| 360 |
+
)
|
| 361 |
+
self._evidence_store = evidence_store
|
| 362 |
+
self._embeddings = embedding_service # Used for MMR evidence selection
|
| 363 |
+
self._agent = Agent(
|
| 364 |
+
model=settings.llm_provider, # Uses configured LLM
|
| 365 |
+
output_type=HypothesisAssessment,
|
| 366 |
+
system_prompt=SYSTEM_PROMPT,
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
async def run(
|
| 370 |
+
self,
|
| 371 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 372 |
+
*,
|
| 373 |
+
thread: AgentThread | None = None,
|
| 374 |
+
**kwargs: Any,
|
| 375 |
+
) -> AgentRunResponse:
|
| 376 |
+
"""Generate hypotheses based on current evidence."""
|
| 377 |
+
# Extract query
|
| 378 |
+
query = self._extract_query(messages)
|
| 379 |
+
|
| 380 |
+
# Get current evidence
|
| 381 |
+
evidence = self._evidence_store.get("current", [])
|
| 382 |
+
|
| 383 |
+
if not evidence:
|
| 384 |
+
return AgentRunResponse(
|
| 385 |
+
messages=[ChatMessage(
|
| 386 |
+
role=Role.ASSISTANT,
|
| 387 |
+
text="No evidence available yet. Search for evidence first."
|
| 388 |
+
)],
|
| 389 |
+
response_id="hypothesis-no-evidence",
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# Generate hypotheses with diverse evidence selection
|
| 393 |
+
# NOTE: format_hypothesis_prompt is now async
|
| 394 |
+
prompt = await format_hypothesis_prompt(
|
| 395 |
+
query, evidence, embeddings=self._embeddings
|
| 396 |
+
)
|
| 397 |
+
result = await self._agent.run(prompt)
|
| 398 |
+
assessment = result.output
|
| 399 |
+
|
| 400 |
+
# Store hypotheses in shared context
|
| 401 |
+
existing = self._evidence_store.get("hypotheses", [])
|
| 402 |
+
self._evidence_store["hypotheses"] = existing + assessment.hypotheses
|
| 403 |
+
|
| 404 |
+
# Format response
|
| 405 |
+
response_text = self._format_response(assessment)
|
| 406 |
+
|
| 407 |
+
return AgentRunResponse(
|
| 408 |
+
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
|
| 409 |
+
response_id=f"hypothesis-{len(assessment.hypotheses)}",
|
| 410 |
+
additional_properties={"assessment": assessment.model_dump()},
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
def _format_response(self, assessment: HypothesisAssessment) -> str:
|
| 414 |
+
"""Format hypothesis assessment as markdown."""
|
| 415 |
+
lines = ["## Generated Hypotheses\n"]
|
| 416 |
+
|
| 417 |
+
for i, h in enumerate(assessment.hypotheses, 1):
|
| 418 |
+
lines.append(f"### Hypothesis {i} (Confidence: {h.confidence:.0%})")
|
| 419 |
+
lines.append(f"**Mechanism**: {h.drug} β {h.target} β {h.pathway} β {h.effect}")
|
| 420 |
+
lines.append(f"**Suggested searches**: {', '.join(h.search_suggestions)}\n")
|
| 421 |
+
|
| 422 |
+
if assessment.primary_hypothesis:
|
| 423 |
+
lines.append(f"### Primary Hypothesis")
|
| 424 |
+
h = assessment.primary_hypothesis
|
| 425 |
+
lines.append(f"{h.drug} β {h.target} β {h.pathway} β {h.effect}\n")
|
| 426 |
+
|
| 427 |
+
if assessment.knowledge_gaps:
|
| 428 |
+
lines.append("### Knowledge Gaps")
|
| 429 |
+
for gap in assessment.knowledge_gaps:
|
| 430 |
+
lines.append(f"- {gap}")
|
| 431 |
+
|
| 432 |
+
if assessment.recommended_searches:
|
| 433 |
+
lines.append("\n### Recommended Next Searches")
|
| 434 |
+
for search in assessment.recommended_searches:
|
| 435 |
+
lines.append(f"- `{search}`")
|
| 436 |
+
|
| 437 |
+
return "\n".join(lines)
|
| 438 |
+
|
| 439 |
+
def _extract_query(self, messages) -> str:
|
| 440 |
+
"""Extract query from messages."""
|
| 441 |
+
if isinstance(messages, str):
|
| 442 |
+
return messages
|
| 443 |
+
elif isinstance(messages, ChatMessage):
|
| 444 |
+
return messages.text or ""
|
| 445 |
+
elif isinstance(messages, list):
|
| 446 |
+
for msg in reversed(messages):
|
| 447 |
+
if isinstance(msg, ChatMessage) and msg.role == Role.USER:
|
| 448 |
+
return msg.text or ""
|
| 449 |
+
elif isinstance(msg, str):
|
| 450 |
+
return msg
|
| 451 |
+
return ""
|
| 452 |
+
|
| 453 |
+
async def run_stream(
|
| 454 |
+
self,
|
| 455 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 456 |
+
*,
|
| 457 |
+
thread: AgentThread | None = None,
|
| 458 |
+
**kwargs: Any,
|
| 459 |
+
) -> AsyncIterable[AgentRunResponseUpdate]:
|
| 460 |
+
"""Streaming wrapper."""
|
| 461 |
+
result = await self.run(messages, thread=thread, **kwargs)
|
| 462 |
+
yield AgentRunResponseUpdate(
|
| 463 |
+
messages=result.messages,
|
| 464 |
+
response_id=result.response_id
|
| 465 |
+
)
|
| 466 |
+
```
|
| 467 |
+
|
| 468 |
+
### 4.3 Update MagenticOrchestrator
|
| 469 |
+
|
| 470 |
+
Add HypothesisAgent to the workflow:
|
| 471 |
+
|
| 472 |
+
```python
|
| 473 |
+
# In MagenticOrchestrator.__init__
|
| 474 |
+
self._hypothesis_agent = HypothesisAgent(self._evidence_store)
|
| 475 |
+
|
| 476 |
+
# In workflow building
|
| 477 |
+
workflow = (
|
| 478 |
+
MagenticBuilder()
|
| 479 |
+
.participants(
|
| 480 |
+
searcher=search_agent,
|
| 481 |
+
hypothesizer=self._hypothesis_agent, # NEW
|
| 482 |
+
judge=judge_agent,
|
| 483 |
+
)
|
| 484 |
+
.with_standard_manager(...)
|
| 485 |
+
.build()
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
# Update task instruction
|
| 489 |
+
task = f"""Research drug repurposing opportunities for: {query}
|
| 490 |
+
|
| 491 |
+
Workflow:
|
| 492 |
+
1. SearchAgent: Find initial evidence from PubMed and web
|
| 493 |
+
2. HypothesisAgent: Generate mechanistic hypotheses (Drug β Target β Pathway β Effect)
|
| 494 |
+
3. SearchAgent: Use hypothesis-suggested queries for targeted search
|
| 495 |
+
4. JudgeAgent: Evaluate if evidence supports hypotheses
|
| 496 |
+
5. Repeat until confident or max rounds
|
| 497 |
+
|
| 498 |
+
Focus on:
|
| 499 |
+
- Identifying specific molecular targets
|
| 500 |
+
- Understanding mechanism of action
|
| 501 |
+
- Finding supporting/contradicting evidence for hypotheses
|
| 502 |
+
"""
|
| 503 |
+
```
|
| 504 |
+
|
| 505 |
+
---
|
| 506 |
+
|
| 507 |
+
## 5. Directory Structure After Phase 7
|
| 508 |
+
|
| 509 |
+
```
|
| 510 |
+
src/
|
| 511 |
+
βββ agents/
|
| 512 |
+
β βββ search_agent.py
|
| 513 |
+
β βββ judge_agent.py
|
| 514 |
+
β βββ hypothesis_agent.py # NEW
|
| 515 |
+
βββ prompts/
|
| 516 |
+
β βββ judge.py
|
| 517 |
+
β βββ hypothesis.py # NEW
|
| 518 |
+
βββ services/
|
| 519 |
+
β βββ embeddings.py
|
| 520 |
+
βββ utils/
|
| 521 |
+
βββ models.py # Updated with hypothesis models
|
| 522 |
+
```
|
| 523 |
+
|
| 524 |
+
---
|
| 525 |
+
|
| 526 |
+
## 6. Tests
|
| 527 |
+
|
| 528 |
+
### 6.1 Unit Tests (`tests/unit/agents/test_hypothesis_agent.py`)
|
| 529 |
+
|
| 530 |
+
```python
|
| 531 |
+
"""Unit tests for HypothesisAgent."""
|
| 532 |
+
import pytest
|
| 533 |
+
from unittest.mock import AsyncMock, MagicMock, patch
|
| 534 |
+
|
| 535 |
+
from src.agents.hypothesis_agent import HypothesisAgent
|
| 536 |
+
from src.utils.models import Citation, Evidence, HypothesisAssessment, MechanismHypothesis
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
@pytest.fixture
|
| 540 |
+
def sample_evidence():
|
| 541 |
+
return [
|
| 542 |
+
Evidence(
|
| 543 |
+
content="Metformin activates AMPK, which inhibits mTOR signaling...",
|
| 544 |
+
citation=Citation(
|
| 545 |
+
source="pubmed",
|
| 546 |
+
title="Metformin and AMPK",
|
| 547 |
+
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
|
| 548 |
+
date="2023"
|
| 549 |
+
)
|
| 550 |
+
)
|
| 551 |
+
]
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
@pytest.fixture
|
| 555 |
+
def mock_assessment():
|
| 556 |
+
return HypothesisAssessment(
|
| 557 |
+
hypotheses=[
|
| 558 |
+
MechanismHypothesis(
|
| 559 |
+
drug="Metformin",
|
| 560 |
+
target="AMPK",
|
| 561 |
+
pathway="mTOR inhibition",
|
| 562 |
+
effect="Reduced cancer cell proliferation",
|
| 563 |
+
confidence=0.75,
|
| 564 |
+
search_suggestions=["metformin AMPK cancer", "mTOR cancer therapy"]
|
| 565 |
+
)
|
| 566 |
+
],
|
| 567 |
+
primary_hypothesis=None,
|
| 568 |
+
knowledge_gaps=["Clinical trial data needed"],
|
| 569 |
+
recommended_searches=["metformin clinical trial cancer"]
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
@pytest.mark.asyncio
|
| 574 |
+
async def test_hypothesis_agent_generates_hypotheses(sample_evidence, mock_assessment):
|
| 575 |
+
"""HypothesisAgent should generate mechanistic hypotheses."""
|
| 576 |
+
store = {"current": sample_evidence, "hypotheses": []}
|
| 577 |
+
|
| 578 |
+
with patch("src.agents.hypothesis_agent.Agent") as MockAgent:
|
| 579 |
+
mock_result = MagicMock()
|
| 580 |
+
mock_result.output = mock_assessment
|
| 581 |
+
MockAgent.return_value.run = AsyncMock(return_value=mock_result)
|
| 582 |
+
|
| 583 |
+
agent = HypothesisAgent(store)
|
| 584 |
+
response = await agent.run("metformin cancer")
|
| 585 |
+
|
| 586 |
+
assert "AMPK" in response.messages[0].text
|
| 587 |
+
assert len(store["hypotheses"]) == 1
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
@pytest.mark.asyncio
|
| 591 |
+
async def test_hypothesis_agent_no_evidence():
|
| 592 |
+
"""HypothesisAgent should handle empty evidence gracefully."""
|
| 593 |
+
store = {"current": [], "hypotheses": []}
|
| 594 |
+
agent = HypothesisAgent(store)
|
| 595 |
+
|
| 596 |
+
response = await agent.run("test query")
|
| 597 |
+
|
| 598 |
+
assert "No evidence" in response.messages[0].text
|
| 599 |
+
```
|
| 600 |
+
|
| 601 |
+
---
|
| 602 |
+
|
| 603 |
+
## 7. Definition of Done
|
| 604 |
+
|
| 605 |
+
Phase 7 is **COMPLETE** when:
|
| 606 |
+
|
| 607 |
+
1. `MechanismHypothesis` and `HypothesisAssessment` models implemented
|
| 608 |
+
2. `HypothesisAgent` generates hypotheses from evidence
|
| 609 |
+
3. Hypotheses stored in shared context
|
| 610 |
+
4. Search queries generated from hypotheses
|
| 611 |
+
5. Magentic workflow includes HypothesisAgent
|
| 612 |
+
6. All unit tests pass
|
| 613 |
+
|
| 614 |
+
---
|
| 615 |
+
|
| 616 |
+
## 8. Value Delivered
|
| 617 |
+
|
| 618 |
+
| Before (Phase 6) | After (Phase 7) |
|
| 619 |
+
|------------------|-----------------|
|
| 620 |
+
| Reactive search | Hypothesis-driven search |
|
| 621 |
+
| Generic queries | Mechanism-targeted queries |
|
| 622 |
+
| No scientific reasoning | Drug β Target β Pathway β Effect |
|
| 623 |
+
| Judge says "need more" | Hypothesis says "search for X to test Y" |
|
| 624 |
+
|
| 625 |
+
**Real example improvement:**
|
| 626 |
+
- Query: "metformin alzheimer"
|
| 627 |
+
- Before: "metformin alzheimer mechanism", "metformin brain"
|
| 628 |
+
- After: "metformin AMPK activation", "AMPK autophagy neurodegeneration", "autophagy amyloid clearance"
|
| 629 |
+
|
| 630 |
+
The search becomes **scientifically targeted** rather than keyword variations.
|
docs/implementation/08_phase_report.md
ADDED
|
@@ -0,0 +1,854 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Phase 8 Implementation Spec: Report Agent
|
| 2 |
+
|
| 3 |
+
**Goal**: Generate structured scientific reports with proper citations and methodology.
|
| 4 |
+
**Philosophy**: "Research isn't complete until it's communicated clearly."
|
| 5 |
+
**Prerequisite**: Phase 7 complete (Hypothesis Agent working)
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 1. Why Report Agent?
|
| 10 |
+
|
| 11 |
+
Current limitation: **Synthesis is basic markdown, not a scientific report.**
|
| 12 |
+
|
| 13 |
+
Current output:
|
| 14 |
+
```
|
| 15 |
+
## Drug Repurposing Analysis
|
| 16 |
+
### Drug Candidates
|
| 17 |
+
- Metformin
|
| 18 |
+
### Key Findings
|
| 19 |
+
- Some findings
|
| 20 |
+
### Citations
|
| 21 |
+
1. [Paper 1](url)
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
With Report Agent:
|
| 25 |
+
```
|
| 26 |
+
## Executive Summary
|
| 27 |
+
One-paragraph summary for busy readers...
|
| 28 |
+
|
| 29 |
+
## Research Question
|
| 30 |
+
Clear statement of what was investigated...
|
| 31 |
+
|
| 32 |
+
## Methodology
|
| 33 |
+
- Sources searched: PubMed, DuckDuckGo
|
| 34 |
+
- Date range: ...
|
| 35 |
+
- Inclusion criteria: ...
|
| 36 |
+
|
| 37 |
+
## Hypotheses Tested
|
| 38 |
+
1. Metformin β AMPK β neuroprotection (Supported: 7 papers, Contradicted: 2)
|
| 39 |
+
|
| 40 |
+
## Findings
|
| 41 |
+
### Mechanistic Evidence
|
| 42 |
+
...
|
| 43 |
+
### Clinical Evidence
|
| 44 |
+
...
|
| 45 |
+
|
| 46 |
+
## Limitations
|
| 47 |
+
- Only English language papers
|
| 48 |
+
- Abstract-level analysis only
|
| 49 |
+
|
| 50 |
+
## Conclusion
|
| 51 |
+
...
|
| 52 |
+
|
| 53 |
+
## References
|
| 54 |
+
Properly formatted citations...
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
## 2. Architecture
|
| 60 |
+
|
| 61 |
+
### Phase 8 Addition
|
| 62 |
+
```
|
| 63 |
+
Evidence + Hypotheses + Assessment
|
| 64 |
+
β
|
| 65 |
+
Report Agent
|
| 66 |
+
β
|
| 67 |
+
Structured Scientific Report
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Report Generation Flow
|
| 71 |
+
```
|
| 72 |
+
1. JudgeAgent says "synthesize"
|
| 73 |
+
2. Magentic Manager selects ReportAgent
|
| 74 |
+
3. ReportAgent gathers:
|
| 75 |
+
- All evidence from shared context
|
| 76 |
+
- All hypotheses (supported/contradicted)
|
| 77 |
+
- Assessment scores
|
| 78 |
+
4. ReportAgent generates structured report
|
| 79 |
+
5. Final output to user
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
---
|
| 83 |
+
|
| 84 |
+
## 3. Report Model
|
| 85 |
+
|
| 86 |
+
### 3.1 Data Model (`src/utils/models.py`)
|
| 87 |
+
|
| 88 |
+
```python
|
| 89 |
+
class ReportSection(BaseModel):
|
| 90 |
+
"""A section of the research report."""
|
| 91 |
+
title: str
|
| 92 |
+
content: str
|
| 93 |
+
citations: list[str] = Field(default_factory=list)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class ResearchReport(BaseModel):
|
| 97 |
+
"""Structured scientific report."""
|
| 98 |
+
|
| 99 |
+
title: str = Field(description="Report title")
|
| 100 |
+
executive_summary: str = Field(
|
| 101 |
+
description="One-paragraph summary for quick reading",
|
| 102 |
+
min_length=100,
|
| 103 |
+
max_length=500
|
| 104 |
+
)
|
| 105 |
+
research_question: str = Field(description="Clear statement of what was investigated")
|
| 106 |
+
|
| 107 |
+
methodology: ReportSection = Field(description="How the research was conducted")
|
| 108 |
+
hypotheses_tested: list[dict] = Field(
|
| 109 |
+
description="Hypotheses with supporting/contradicting evidence counts"
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
mechanistic_findings: ReportSection = Field(
|
| 113 |
+
description="Findings about drug mechanisms"
|
| 114 |
+
)
|
| 115 |
+
clinical_findings: ReportSection = Field(
|
| 116 |
+
description="Findings from clinical/preclinical studies"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
drug_candidates: list[str] = Field(description="Identified drug candidates")
|
| 120 |
+
limitations: list[str] = Field(description="Study limitations")
|
| 121 |
+
conclusion: str = Field(description="Overall conclusion")
|
| 122 |
+
|
| 123 |
+
references: list[dict] = Field(
|
| 124 |
+
description="Formatted references with title, authors, source, URL"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Metadata
|
| 128 |
+
sources_searched: list[str] = Field(default_factory=list)
|
| 129 |
+
total_papers_reviewed: int = 0
|
| 130 |
+
search_iterations: int = 0
|
| 131 |
+
confidence_score: float = Field(ge=0, le=1)
|
| 132 |
+
|
| 133 |
+
def to_markdown(self) -> str:
|
| 134 |
+
"""Render report as markdown."""
|
| 135 |
+
sections = [
|
| 136 |
+
f"# {self.title}\n",
|
| 137 |
+
f"## Executive Summary\n{self.executive_summary}\n",
|
| 138 |
+
f"## Research Question\n{self.research_question}\n",
|
| 139 |
+
f"## Methodology\n{self.methodology.content}\n",
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
# Hypotheses
|
| 143 |
+
sections.append("## Hypotheses Tested\n")
|
| 144 |
+
for h in self.hypotheses_tested:
|
| 145 |
+
status = "β
Supported" if h.get("supported", 0) > h.get("contradicted", 0) else "β οΈ Mixed"
|
| 146 |
+
sections.append(
|
| 147 |
+
f"- **{h['mechanism']}** ({status}): "
|
| 148 |
+
f"{h.get('supported', 0)} supporting, {h.get('contradicted', 0)} contradicting\n"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Findings
|
| 152 |
+
sections.append(f"## Mechanistic Findings\n{self.mechanistic_findings.content}\n")
|
| 153 |
+
sections.append(f"## Clinical Findings\n{self.clinical_findings.content}\n")
|
| 154 |
+
|
| 155 |
+
# Drug candidates
|
| 156 |
+
sections.append("## Drug Candidates\n")
|
| 157 |
+
for drug in self.drug_candidates:
|
| 158 |
+
sections.append(f"- **{drug}**\n")
|
| 159 |
+
|
| 160 |
+
# Limitations
|
| 161 |
+
sections.append("## Limitations\n")
|
| 162 |
+
for lim in self.limitations:
|
| 163 |
+
sections.append(f"- {lim}\n")
|
| 164 |
+
|
| 165 |
+
# Conclusion
|
| 166 |
+
sections.append(f"## Conclusion\n{self.conclusion}\n")
|
| 167 |
+
|
| 168 |
+
# References
|
| 169 |
+
sections.append("## References\n")
|
| 170 |
+
for i, ref in enumerate(self.references, 1):
|
| 171 |
+
sections.append(
|
| 172 |
+
f"{i}. {ref.get('authors', 'Unknown')}. "
|
| 173 |
+
f"*{ref.get('title', 'Untitled')}*. "
|
| 174 |
+
f"{ref.get('source', '')} ({ref.get('date', '')}). "
|
| 175 |
+
f"[Link]({ref.get('url', '#')})\n"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Metadata footer
|
| 179 |
+
sections.append("\n---\n")
|
| 180 |
+
sections.append(
|
| 181 |
+
f"*Report generated from {self.total_papers_reviewed} papers "
|
| 182 |
+
f"across {self.search_iterations} search iterations. "
|
| 183 |
+
f"Confidence: {self.confidence_score:.0%}*"
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
return "\n".join(sections)
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
---
|
| 190 |
+
|
| 191 |
+
## 4. Implementation
|
| 192 |
+
|
| 193 |
+
### 4.0 Citation Validation (`src/utils/citation_validator.py`)
|
| 194 |
+
|
| 195 |
+
> **π¨ CRITICAL: Why Citation Validation?**
|
| 196 |
+
>
|
| 197 |
+
> LLMs frequently **hallucinate** citations - inventing paper titles, authors, and URLs
|
| 198 |
+
> that don't exist. For a medical research tool, fake citations are **dangerous**.
|
| 199 |
+
>
|
| 200 |
+
> This validation layer ensures every reference in the report actually exists
|
| 201 |
+
> in the collected evidence.
|
| 202 |
+
|
| 203 |
+
```python
|
| 204 |
+
"""Citation validation to prevent LLM hallucination.
|
| 205 |
+
|
| 206 |
+
CRITICAL: Medical research requires accurate citations.
|
| 207 |
+
This module validates that all references exist in collected evidence.
|
| 208 |
+
"""
|
| 209 |
+
import logging
|
| 210 |
+
from typing import TYPE_CHECKING
|
| 211 |
+
|
| 212 |
+
if TYPE_CHECKING:
|
| 213 |
+
from src.utils.models import Evidence, ResearchReport
|
| 214 |
+
|
| 215 |
+
logger = logging.getLogger(__name__)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def validate_references(
|
| 219 |
+
report: "ResearchReport",
|
| 220 |
+
evidence: list["Evidence"]
|
| 221 |
+
) -> "ResearchReport":
|
| 222 |
+
"""Ensure all references actually exist in collected evidence.
|
| 223 |
+
|
| 224 |
+
CRITICAL: Prevents LLM hallucination of citations.
|
| 225 |
+
|
| 226 |
+
Args:
|
| 227 |
+
report: The generated research report
|
| 228 |
+
evidence: All evidence collected during research
|
| 229 |
+
|
| 230 |
+
Returns:
|
| 231 |
+
Report with only valid references (hallucinated ones removed)
|
| 232 |
+
"""
|
| 233 |
+
# Build set of valid URLs from evidence
|
| 234 |
+
valid_urls = {e.citation.url for e in evidence}
|
| 235 |
+
valid_titles = {e.citation.title.lower() for e in evidence}
|
| 236 |
+
|
| 237 |
+
validated_refs = []
|
| 238 |
+
removed_count = 0
|
| 239 |
+
|
| 240 |
+
for ref in report.references:
|
| 241 |
+
ref_url = ref.get("url", "")
|
| 242 |
+
ref_title = ref.get("title", "").lower()
|
| 243 |
+
|
| 244 |
+
# Check if URL matches collected evidence
|
| 245 |
+
if ref_url in valid_urls:
|
| 246 |
+
validated_refs.append(ref)
|
| 247 |
+
# Fallback: check title match (URLs might differ slightly)
|
| 248 |
+
elif ref_title and any(ref_title in t or t in ref_title for t in valid_titles):
|
| 249 |
+
validated_refs.append(ref)
|
| 250 |
+
else:
|
| 251 |
+
removed_count += 1
|
| 252 |
+
logger.warning(
|
| 253 |
+
f"Removed hallucinated reference: '{ref.get('title', 'Unknown')}' "
|
| 254 |
+
f"(URL: {ref_url[:50]}...)"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if removed_count > 0:
|
| 258 |
+
logger.info(
|
| 259 |
+
f"Citation validation removed {removed_count} hallucinated references. "
|
| 260 |
+
f"{len(validated_refs)} valid references remain."
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# Update report with validated references
|
| 264 |
+
report.references = validated_refs
|
| 265 |
+
return report
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def build_reference_from_evidence(evidence: "Evidence") -> dict:
|
| 269 |
+
"""Build a properly formatted reference from evidence.
|
| 270 |
+
|
| 271 |
+
Use this to ensure references match the original evidence exactly.
|
| 272 |
+
"""
|
| 273 |
+
return {
|
| 274 |
+
"title": evidence.citation.title,
|
| 275 |
+
"authors": evidence.citation.authors or ["Unknown"],
|
| 276 |
+
"source": evidence.citation.source,
|
| 277 |
+
"date": evidence.citation.date or "n.d.",
|
| 278 |
+
"url": evidence.citation.url,
|
| 279 |
+
}
|
| 280 |
+
```
|
| 281 |
+
|
| 282 |
+
### 4.1 Report Prompts (`src/prompts/report.py`)
|
| 283 |
+
|
| 284 |
+
```python
|
| 285 |
+
"""Prompts for Report Agent."""
|
| 286 |
+
from src.utils.text_utils import truncate_at_sentence, select_diverse_evidence
|
| 287 |
+
|
| 288 |
+
SYSTEM_PROMPT = """You are a scientific writer specializing in drug repurposing research reports.
|
| 289 |
+
|
| 290 |
+
Your role is to synthesize evidence and hypotheses into a clear, structured report.
|
| 291 |
+
|
| 292 |
+
A good report:
|
| 293 |
+
1. Has a clear EXECUTIVE SUMMARY (one paragraph, key takeaways)
|
| 294 |
+
2. States the RESEARCH QUESTION clearly
|
| 295 |
+
3. Describes METHODOLOGY (what was searched, how)
|
| 296 |
+
4. Evaluates HYPOTHESES with evidence counts
|
| 297 |
+
5. Separates MECHANISTIC and CLINICAL findings
|
| 298 |
+
6. Lists specific DRUG CANDIDATES
|
| 299 |
+
7. Acknowledges LIMITATIONS honestly
|
| 300 |
+
8. Provides a balanced CONCLUSION
|
| 301 |
+
9. Includes properly formatted REFERENCES
|
| 302 |
+
|
| 303 |
+
Write in scientific but accessible language. Be specific about evidence strength.
|
| 304 |
+
|
| 305 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 306 |
+
π¨ CRITICAL CITATION REQUIREMENTS π¨
|
| 307 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 308 |
+
|
| 309 |
+
You MUST follow these rules for the References section:
|
| 310 |
+
|
| 311 |
+
1. You may ONLY cite papers that appear in the Evidence section above
|
| 312 |
+
2. Every reference URL must EXACTLY match a provided evidence URL
|
| 313 |
+
3. Do NOT invent, fabricate, or hallucinate any references
|
| 314 |
+
4. Do NOT modify paper titles, authors, dates, or URLs
|
| 315 |
+
5. If unsure about a citation, OMIT it rather than guess
|
| 316 |
+
6. Copy URLs exactly as provided - do not create similar-looking URLs
|
| 317 |
+
|
| 318 |
+
VIOLATION OF THESE RULES PRODUCES DANGEROUS MISINFORMATION.
|
| 319 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ"""
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
async def format_report_prompt(
|
| 323 |
+
query: str,
|
| 324 |
+
evidence: list,
|
| 325 |
+
hypotheses: list,
|
| 326 |
+
assessment: dict,
|
| 327 |
+
metadata: dict,
|
| 328 |
+
embeddings=None
|
| 329 |
+
) -> str:
|
| 330 |
+
"""Format prompt for report generation.
|
| 331 |
+
|
| 332 |
+
Includes full evidence details for accurate citation.
|
| 333 |
+
"""
|
| 334 |
+
# Select diverse evidence (not arbitrary truncation)
|
| 335 |
+
selected = await select_diverse_evidence(
|
| 336 |
+
evidence, n=20, query=query, embeddings=embeddings
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# Include FULL citation details for each evidence item
|
| 340 |
+
# This helps the LLM create accurate references
|
| 341 |
+
evidence_summary = "\n".join([
|
| 342 |
+
f"- **Title**: {e.citation.title}\n"
|
| 343 |
+
f" **URL**: {e.citation.url}\n"
|
| 344 |
+
f" **Authors**: {', '.join(e.citation.authors or ['Unknown'])}\n"
|
| 345 |
+
f" **Date**: {e.citation.date or 'n.d.'}\n"
|
| 346 |
+
f" **Source**: {e.citation.source}\n"
|
| 347 |
+
f" **Content**: {truncate_at_sentence(e.content, 200)}\n"
|
| 348 |
+
for e in selected
|
| 349 |
+
])
|
| 350 |
+
|
| 351 |
+
hypotheses_summary = "\n".join([
|
| 352 |
+
f"- {h.drug} β {h.target} β {h.pathway} β {h.effect} (Confidence: {h.confidence:.0%})"
|
| 353 |
+
for h in hypotheses
|
| 354 |
+
]) if hypotheses else "No hypotheses generated yet."
|
| 355 |
+
|
| 356 |
+
return f"""Generate a structured research report for the following query.
|
| 357 |
+
|
| 358 |
+
## Original Query
|
| 359 |
+
{query}
|
| 360 |
+
|
| 361 |
+
## Evidence Collected ({len(selected)} papers, selected for diversity)
|
| 362 |
+
|
| 363 |
+
{evidence_summary}
|
| 364 |
+
|
| 365 |
+
## Hypotheses Generated
|
| 366 |
+
{hypotheses_summary}
|
| 367 |
+
|
| 368 |
+
## Assessment Scores
|
| 369 |
+
- Mechanism Score: {assessment.get('mechanism_score', 'N/A')}/10
|
| 370 |
+
- Clinical Evidence Score: {assessment.get('clinical_score', 'N/A')}/10
|
| 371 |
+
- Overall Confidence: {assessment.get('confidence', 0):.0%}
|
| 372 |
+
|
| 373 |
+
## Metadata
|
| 374 |
+
- Sources Searched: {', '.join(metadata.get('sources', []))}
|
| 375 |
+
- Search Iterations: {metadata.get('iterations', 0)}
|
| 376 |
+
|
| 377 |
+
Generate a complete ResearchReport with all sections filled in.
|
| 378 |
+
|
| 379 |
+
REMINDER: Only cite papers from the Evidence section above. Copy URLs exactly."""
|
| 380 |
+
```
|
| 381 |
+
|
| 382 |
+
### 4.2 Report Agent (`src/agents/report_agent.py`)
|
| 383 |
+
|
| 384 |
+
```python
|
| 385 |
+
"""Report agent for generating structured research reports."""
|
| 386 |
+
from collections.abc import AsyncIterable
|
| 387 |
+
from typing import TYPE_CHECKING, Any
|
| 388 |
+
|
| 389 |
+
from agent_framework import (
|
| 390 |
+
AgentRunResponse,
|
| 391 |
+
AgentRunResponseUpdate,
|
| 392 |
+
AgentThread,
|
| 393 |
+
BaseAgent,
|
| 394 |
+
ChatMessage,
|
| 395 |
+
Role,
|
| 396 |
+
)
|
| 397 |
+
from pydantic_ai import Agent
|
| 398 |
+
|
| 399 |
+
from src.prompts.report import SYSTEM_PROMPT, format_report_prompt
|
| 400 |
+
from src.utils.citation_validator import validate_references # CRITICAL
|
| 401 |
+
from src.utils.config import settings
|
| 402 |
+
from src.utils.models import Evidence, MechanismHypothesis, ResearchReport
|
| 403 |
+
|
| 404 |
+
if TYPE_CHECKING:
|
| 405 |
+
from src.services.embeddings import EmbeddingService
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
class ReportAgent(BaseAgent):
|
| 409 |
+
"""Generates structured scientific reports from evidence and hypotheses."""
|
| 410 |
+
|
| 411 |
+
def __init__(
|
| 412 |
+
self,
|
| 413 |
+
evidence_store: dict[str, list[Evidence]],
|
| 414 |
+
embedding_service: "EmbeddingService | None" = None, # For diverse selection
|
| 415 |
+
) -> None:
|
| 416 |
+
super().__init__(
|
| 417 |
+
name="ReportAgent",
|
| 418 |
+
description="Generates structured scientific research reports with citations",
|
| 419 |
+
)
|
| 420 |
+
self._evidence_store = evidence_store
|
| 421 |
+
self._embeddings = embedding_service
|
| 422 |
+
self._agent = Agent(
|
| 423 |
+
model=settings.llm_provider,
|
| 424 |
+
output_type=ResearchReport,
|
| 425 |
+
system_prompt=SYSTEM_PROMPT,
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
async def run(
|
| 429 |
+
self,
|
| 430 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 431 |
+
*,
|
| 432 |
+
thread: AgentThread | None = None,
|
| 433 |
+
**kwargs: Any,
|
| 434 |
+
) -> AgentRunResponse:
|
| 435 |
+
"""Generate research report."""
|
| 436 |
+
query = self._extract_query(messages)
|
| 437 |
+
|
| 438 |
+
# Gather all context
|
| 439 |
+
evidence = self._evidence_store.get("current", [])
|
| 440 |
+
hypotheses = self._evidence_store.get("hypotheses", [])
|
| 441 |
+
assessment = self._evidence_store.get("last_assessment", {})
|
| 442 |
+
|
| 443 |
+
if not evidence:
|
| 444 |
+
return AgentRunResponse(
|
| 445 |
+
messages=[ChatMessage(
|
| 446 |
+
role=Role.ASSISTANT,
|
| 447 |
+
text="Cannot generate report: No evidence collected."
|
| 448 |
+
)],
|
| 449 |
+
response_id="report-no-evidence",
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# Build metadata
|
| 453 |
+
metadata = {
|
| 454 |
+
"sources": list(set(e.citation.source for e in evidence)),
|
| 455 |
+
"iterations": self._evidence_store.get("iteration_count", 0),
|
| 456 |
+
}
|
| 457 |
+
|
| 458 |
+
# Generate report (format_report_prompt is now async)
|
| 459 |
+
prompt = await format_report_prompt(
|
| 460 |
+
query=query,
|
| 461 |
+
evidence=evidence,
|
| 462 |
+
hypotheses=hypotheses,
|
| 463 |
+
assessment=assessment,
|
| 464 |
+
metadata=metadata,
|
| 465 |
+
embeddings=self._embeddings,
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
result = await self._agent.run(prompt)
|
| 469 |
+
report = result.output
|
| 470 |
+
|
| 471 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 472 |
+
# π¨ CRITICAL: Validate citations to prevent hallucination
|
| 473 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 474 |
+
report = validate_references(report, evidence)
|
| 475 |
+
|
| 476 |
+
# Store validated report
|
| 477 |
+
self._evidence_store["final_report"] = report
|
| 478 |
+
|
| 479 |
+
# Return markdown version
|
| 480 |
+
return AgentRunResponse(
|
| 481 |
+
messages=[ChatMessage(role=Role.ASSISTANT, text=report.to_markdown())],
|
| 482 |
+
response_id="report-complete",
|
| 483 |
+
additional_properties={"report": report.model_dump()},
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
def _extract_query(self, messages) -> str:
|
| 487 |
+
"""Extract query from messages."""
|
| 488 |
+
if isinstance(messages, str):
|
| 489 |
+
return messages
|
| 490 |
+
elif isinstance(messages, ChatMessage):
|
| 491 |
+
return messages.text or ""
|
| 492 |
+
elif isinstance(messages, list):
|
| 493 |
+
for msg in reversed(messages):
|
| 494 |
+
if isinstance(msg, ChatMessage) and msg.role == Role.USER:
|
| 495 |
+
return msg.text or ""
|
| 496 |
+
elif isinstance(msg, str):
|
| 497 |
+
return msg
|
| 498 |
+
return ""
|
| 499 |
+
|
| 500 |
+
async def run_stream(
|
| 501 |
+
self,
|
| 502 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 503 |
+
*,
|
| 504 |
+
thread: AgentThread | None = None,
|
| 505 |
+
**kwargs: Any,
|
| 506 |
+
) -> AsyncIterable[AgentRunResponseUpdate]:
|
| 507 |
+
"""Streaming wrapper."""
|
| 508 |
+
result = await self.run(messages, thread=thread, **kwargs)
|
| 509 |
+
yield AgentRunResponseUpdate(
|
| 510 |
+
messages=result.messages,
|
| 511 |
+
response_id=result.response_id
|
| 512 |
+
)
|
| 513 |
+
```
|
| 514 |
+
|
| 515 |
+
### 4.3 Update MagenticOrchestrator
|
| 516 |
+
|
| 517 |
+
Add ReportAgent as the final synthesis step:
|
| 518 |
+
|
| 519 |
+
```python
|
| 520 |
+
# In MagenticOrchestrator.__init__
|
| 521 |
+
self._report_agent = ReportAgent(self._evidence_store)
|
| 522 |
+
|
| 523 |
+
# In workflow building
|
| 524 |
+
workflow = (
|
| 525 |
+
MagenticBuilder()
|
| 526 |
+
.participants(
|
| 527 |
+
searcher=search_agent,
|
| 528 |
+
hypothesizer=hypothesis_agent,
|
| 529 |
+
judge=judge_agent,
|
| 530 |
+
reporter=self._report_agent, # NEW
|
| 531 |
+
)
|
| 532 |
+
.with_standard_manager(...)
|
| 533 |
+
.build()
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
# Update task instruction
|
| 537 |
+
task = f"""Research drug repurposing opportunities for: {query}
|
| 538 |
+
|
| 539 |
+
Workflow:
|
| 540 |
+
1. SearchAgent: Find evidence from PubMed and web
|
| 541 |
+
2. HypothesisAgent: Generate mechanistic hypotheses
|
| 542 |
+
3. SearchAgent: Targeted search based on hypotheses
|
| 543 |
+
4. JudgeAgent: Evaluate evidence sufficiency
|
| 544 |
+
5. If sufficient β ReportAgent: Generate structured research report
|
| 545 |
+
6. If not sufficient β Repeat from step 1 with refined queries
|
| 546 |
+
|
| 547 |
+
The final output should be a complete research report with:
|
| 548 |
+
- Executive summary
|
| 549 |
+
- Methodology
|
| 550 |
+
- Hypotheses tested
|
| 551 |
+
- Mechanistic and clinical findings
|
| 552 |
+
- Drug candidates
|
| 553 |
+
- Limitations
|
| 554 |
+
- Conclusion with references
|
| 555 |
+
"""
|
| 556 |
+
```
|
| 557 |
+
|
| 558 |
+
---
|
| 559 |
+
|
| 560 |
+
## 5. Directory Structure After Phase 8
|
| 561 |
+
|
| 562 |
+
```
|
| 563 |
+
src/
|
| 564 |
+
βββ agents/
|
| 565 |
+
β βββ search_agent.py
|
| 566 |
+
β βββ judge_agent.py
|
| 567 |
+
β βββ hypothesis_agent.py
|
| 568 |
+
β βββ report_agent.py # NEW
|
| 569 |
+
βββ prompts/
|
| 570 |
+
β βββ judge.py
|
| 571 |
+
β βββ hypothesis.py
|
| 572 |
+
β βββ report.py # NEW
|
| 573 |
+
βββ services/
|
| 574 |
+
β βββ embeddings.py
|
| 575 |
+
βββ utils/
|
| 576 |
+
βββ models.py # Updated with report models
|
| 577 |
+
```
|
| 578 |
+
|
| 579 |
+
---
|
| 580 |
+
|
| 581 |
+
## 6. Tests
|
| 582 |
+
|
| 583 |
+
### 6.1 Unit Tests (`tests/unit/agents/test_report_agent.py`)
|
| 584 |
+
|
| 585 |
+
```python
|
| 586 |
+
"""Unit tests for ReportAgent."""
|
| 587 |
+
import pytest
|
| 588 |
+
from unittest.mock import AsyncMock, MagicMock, patch
|
| 589 |
+
|
| 590 |
+
from src.agents.report_agent import ReportAgent
|
| 591 |
+
from src.utils.models import (
|
| 592 |
+
Citation, Evidence, MechanismHypothesis,
|
| 593 |
+
ResearchReport, ReportSection
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
@pytest.fixture
|
| 598 |
+
def sample_evidence():
|
| 599 |
+
return [
|
| 600 |
+
Evidence(
|
| 601 |
+
content="Metformin activates AMPK...",
|
| 602 |
+
citation=Citation(
|
| 603 |
+
source="pubmed",
|
| 604 |
+
title="Metformin mechanisms",
|
| 605 |
+
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
|
| 606 |
+
date="2023",
|
| 607 |
+
authors=["Smith J", "Jones A"]
|
| 608 |
+
)
|
| 609 |
+
)
|
| 610 |
+
]
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
@pytest.fixture
|
| 614 |
+
def sample_hypotheses():
|
| 615 |
+
return [
|
| 616 |
+
MechanismHypothesis(
|
| 617 |
+
drug="Metformin",
|
| 618 |
+
target="AMPK",
|
| 619 |
+
pathway="mTOR inhibition",
|
| 620 |
+
effect="Neuroprotection",
|
| 621 |
+
confidence=0.8,
|
| 622 |
+
search_suggestions=[]
|
| 623 |
+
)
|
| 624 |
+
]
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
@pytest.fixture
|
| 628 |
+
def mock_report():
|
| 629 |
+
return ResearchReport(
|
| 630 |
+
title="Drug Repurposing Analysis: Metformin for Alzheimer's",
|
| 631 |
+
executive_summary="This report analyzes metformin as a potential...",
|
| 632 |
+
research_question="Can metformin be repurposed for Alzheimer's disease?",
|
| 633 |
+
methodology=ReportSection(
|
| 634 |
+
title="Methodology",
|
| 635 |
+
content="Searched PubMed and web sources..."
|
| 636 |
+
),
|
| 637 |
+
hypotheses_tested=[
|
| 638 |
+
{"mechanism": "Metformin β AMPK β neuroprotection", "supported": 5, "contradicted": 1}
|
| 639 |
+
],
|
| 640 |
+
mechanistic_findings=ReportSection(
|
| 641 |
+
title="Mechanistic Findings",
|
| 642 |
+
content="Evidence suggests AMPK activation..."
|
| 643 |
+
),
|
| 644 |
+
clinical_findings=ReportSection(
|
| 645 |
+
title="Clinical Findings",
|
| 646 |
+
content="Limited clinical data available..."
|
| 647 |
+
),
|
| 648 |
+
drug_candidates=["Metformin"],
|
| 649 |
+
limitations=["Abstract-level analysis only"],
|
| 650 |
+
conclusion="Metformin shows promise...",
|
| 651 |
+
references=[],
|
| 652 |
+
sources_searched=["pubmed", "web"],
|
| 653 |
+
total_papers_reviewed=10,
|
| 654 |
+
search_iterations=3,
|
| 655 |
+
confidence_score=0.75
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
@pytest.mark.asyncio
|
| 660 |
+
async def test_report_agent_generates_report(
|
| 661 |
+
sample_evidence, sample_hypotheses, mock_report
|
| 662 |
+
):
|
| 663 |
+
"""ReportAgent should generate structured report."""
|
| 664 |
+
store = {
|
| 665 |
+
"current": sample_evidence,
|
| 666 |
+
"hypotheses": sample_hypotheses,
|
| 667 |
+
"last_assessment": {"mechanism_score": 8, "clinical_score": 6}
|
| 668 |
+
}
|
| 669 |
+
|
| 670 |
+
with patch("src.agents.report_agent.Agent") as MockAgent:
|
| 671 |
+
mock_result = MagicMock()
|
| 672 |
+
mock_result.output = mock_report
|
| 673 |
+
MockAgent.return_value.run = AsyncMock(return_value=mock_result)
|
| 674 |
+
|
| 675 |
+
agent = ReportAgent(store)
|
| 676 |
+
response = await agent.run("metformin alzheimer")
|
| 677 |
+
|
| 678 |
+
assert "Executive Summary" in response.messages[0].text
|
| 679 |
+
assert "Methodology" in response.messages[0].text
|
| 680 |
+
assert "References" in response.messages[0].text
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
@pytest.mark.asyncio
|
| 684 |
+
async def test_report_agent_no_evidence():
|
| 685 |
+
"""ReportAgent should handle empty evidence gracefully."""
|
| 686 |
+
store = {"current": [], "hypotheses": []}
|
| 687 |
+
agent = ReportAgent(store)
|
| 688 |
+
|
| 689 |
+
response = await agent.run("test query")
|
| 690 |
+
|
| 691 |
+
assert "Cannot generate report" in response.messages[0].text
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 695 |
+
# π¨ CRITICAL: Citation Validation Tests
|
| 696 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 697 |
+
|
| 698 |
+
@pytest.mark.asyncio
|
| 699 |
+
async def test_report_agent_removes_hallucinated_citations(sample_evidence):
|
| 700 |
+
"""ReportAgent should remove citations not in evidence."""
|
| 701 |
+
from src.utils.citation_validator import validate_references
|
| 702 |
+
|
| 703 |
+
# Create report with mix of valid and hallucinated references
|
| 704 |
+
report_with_hallucinations = ResearchReport(
|
| 705 |
+
title="Test Report",
|
| 706 |
+
executive_summary="This is a test report for citation validation...",
|
| 707 |
+
research_question="Testing citation validation",
|
| 708 |
+
methodology=ReportSection(title="Methodology", content="Test"),
|
| 709 |
+
hypotheses_tested=[],
|
| 710 |
+
mechanistic_findings=ReportSection(title="Mechanistic", content="Test"),
|
| 711 |
+
clinical_findings=ReportSection(title="Clinical", content="Test"),
|
| 712 |
+
drug_candidates=["TestDrug"],
|
| 713 |
+
limitations=["Test limitation"],
|
| 714 |
+
conclusion="Test conclusion",
|
| 715 |
+
references=[
|
| 716 |
+
# Valid reference (matches sample_evidence)
|
| 717 |
+
{
|
| 718 |
+
"title": "Metformin mechanisms",
|
| 719 |
+
"url": "https://pubmed.ncbi.nlm.nih.gov/12345/",
|
| 720 |
+
"authors": ["Smith J", "Jones A"],
|
| 721 |
+
"date": "2023",
|
| 722 |
+
"source": "pubmed"
|
| 723 |
+
},
|
| 724 |
+
# HALLUCINATED reference (URL doesn't exist in evidence)
|
| 725 |
+
{
|
| 726 |
+
"title": "Fake Paper That Doesn't Exist",
|
| 727 |
+
"url": "https://fake-journal.com/made-up-paper",
|
| 728 |
+
"authors": ["Hallucinated A"],
|
| 729 |
+
"date": "2024",
|
| 730 |
+
"source": "fake"
|
| 731 |
+
},
|
| 732 |
+
# Another HALLUCINATED reference
|
| 733 |
+
{
|
| 734 |
+
"title": "Invented Research",
|
| 735 |
+
"url": "https://pubmed.ncbi.nlm.nih.gov/99999999/",
|
| 736 |
+
"authors": ["NotReal B"],
|
| 737 |
+
"date": "2025",
|
| 738 |
+
"source": "pubmed"
|
| 739 |
+
}
|
| 740 |
+
],
|
| 741 |
+
sources_searched=["pubmed"],
|
| 742 |
+
total_papers_reviewed=1,
|
| 743 |
+
search_iterations=1,
|
| 744 |
+
confidence_score=0.5
|
| 745 |
+
)
|
| 746 |
+
|
| 747 |
+
# Validate - should remove hallucinated references
|
| 748 |
+
validated_report = validate_references(report_with_hallucinations, sample_evidence)
|
| 749 |
+
|
| 750 |
+
# Only the valid reference should remain
|
| 751 |
+
assert len(validated_report.references) == 1
|
| 752 |
+
assert validated_report.references[0]["title"] == "Metformin mechanisms"
|
| 753 |
+
assert "Fake Paper" not in str(validated_report.references)
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
def test_citation_validator_handles_empty_references():
|
| 757 |
+
"""Citation validator should handle reports with no references."""
|
| 758 |
+
from src.utils.citation_validator import validate_references
|
| 759 |
+
|
| 760 |
+
report = ResearchReport(
|
| 761 |
+
title="Empty Refs Report",
|
| 762 |
+
executive_summary="This report has no references...",
|
| 763 |
+
research_question="Testing empty refs",
|
| 764 |
+
methodology=ReportSection(title="Methodology", content="Test"),
|
| 765 |
+
hypotheses_tested=[],
|
| 766 |
+
mechanistic_findings=ReportSection(title="Mechanistic", content="Test"),
|
| 767 |
+
clinical_findings=ReportSection(title="Clinical", content="Test"),
|
| 768 |
+
drug_candidates=[],
|
| 769 |
+
limitations=[],
|
| 770 |
+
conclusion="Test",
|
| 771 |
+
references=[], # Empty!
|
| 772 |
+
sources_searched=[],
|
| 773 |
+
total_papers_reviewed=0,
|
| 774 |
+
search_iterations=0,
|
| 775 |
+
confidence_score=0.0
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
validated = validate_references(report, [])
|
| 779 |
+
assert validated.references == []
|
| 780 |
+
```
|
| 781 |
+
|
| 782 |
+
---
|
| 783 |
+
|
| 784 |
+
## 7. Definition of Done
|
| 785 |
+
|
| 786 |
+
Phase 8 is **COMPLETE** when:
|
| 787 |
+
|
| 788 |
+
1. `ResearchReport` model implemented with all sections
|
| 789 |
+
2. `ReportAgent` generates structured reports
|
| 790 |
+
3. Reports include proper citations and methodology
|
| 791 |
+
4. Magentic workflow uses ReportAgent for final synthesis
|
| 792 |
+
5. Report renders as clean markdown
|
| 793 |
+
6. All unit tests pass
|
| 794 |
+
|
| 795 |
+
---
|
| 796 |
+
|
| 797 |
+
## 8. Value Delivered
|
| 798 |
+
|
| 799 |
+
| Before (Phase 7) | After (Phase 8) |
|
| 800 |
+
|------------------|-----------------|
|
| 801 |
+
| Basic synthesis | Structured scientific report |
|
| 802 |
+
| Simple bullet points | Executive summary + methodology |
|
| 803 |
+
| List of citations | Formatted references |
|
| 804 |
+
| No methodology | Clear research process |
|
| 805 |
+
| No limitations | Honest limitations section |
|
| 806 |
+
|
| 807 |
+
**Sample output comparison:**
|
| 808 |
+
|
| 809 |
+
Before:
|
| 810 |
+
```
|
| 811 |
+
## Analysis
|
| 812 |
+
- Metformin might help
|
| 813 |
+
- Found 5 papers
|
| 814 |
+
[Link 1] [Link 2]
|
| 815 |
+
```
|
| 816 |
+
|
| 817 |
+
After:
|
| 818 |
+
```
|
| 819 |
+
# Drug Repurposing Analysis: Metformin for Alzheimer's Disease
|
| 820 |
+
|
| 821 |
+
## Executive Summary
|
| 822 |
+
Analysis of 15 papers suggests metformin may provide neuroprotection
|
| 823 |
+
through AMPK activation. Mechanistic evidence is strong (8/10),
|
| 824 |
+
while clinical evidence is moderate (6/10)...
|
| 825 |
+
|
| 826 |
+
## Methodology
|
| 827 |
+
Systematic search of PubMed and web sources using queries...
|
| 828 |
+
|
| 829 |
+
## Hypotheses Tested
|
| 830 |
+
- β
Metformin β AMPK β neuroprotection (7 supporting, 2 contradicting)
|
| 831 |
+
|
| 832 |
+
## References
|
| 833 |
+
1. Smith J, Jones A. *Metformin mechanisms*. Nature (2023). [Link](...)
|
| 834 |
+
```
|
| 835 |
+
|
| 836 |
+
---
|
| 837 |
+
|
| 838 |
+
## 9. Complete Magentic Architecture (Phases 5-8)
|
| 839 |
+
|
| 840 |
+
```
|
| 841 |
+
User Query
|
| 842 |
+
β
|
| 843 |
+
Gradio UI
|
| 844 |
+
β
|
| 845 |
+
Magentic Manager (LLM Coordinator)
|
| 846 |
+
βββ SearchAgent ββ PubMed + Web + VectorDB
|
| 847 |
+
βββ HypothesisAgent ββ Mechanistic Reasoning
|
| 848 |
+
βββ JudgeAgent ββ Evidence Assessment
|
| 849 |
+
βββ ReportAgent ββ Final Synthesis
|
| 850 |
+
β
|
| 851 |
+
Structured Research Report
|
| 852 |
+
```
|
| 853 |
+
|
| 854 |
+
**This matches Mario's diagram** with the practical agents that add real value for drug repurposing research.
|
docs/implementation/roadmap.md
CHANGED
|
@@ -115,26 +115,96 @@ tests/
|
|
| 115 |
|
| 116 |
---
|
| 117 |
|
| 118 |
-
### **Phase 5: Magentic Integration
|
| 119 |
|
| 120 |
*Goal: Upgrade orchestrator to use Microsoft Agent Framework patterns.*
|
| 121 |
|
| 122 |
-
- [
|
| 123 |
-
- [
|
| 124 |
-
- [
|
| 125 |
-
- [
|
| 126 |
- **Deliverable**: Same API, better multi-agent orchestration engine.
|
| 127 |
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
---
|
| 131 |
|
| 132 |
## Spec Documents
|
| 133 |
|
| 134 |
-
1. **[Phase 1 Spec: Foundation](01_phase_foundation.md)**
|
| 135 |
-
2. **[Phase 2 Spec: Search Slice](02_phase_search.md)**
|
| 136 |
-
3. **[Phase 3 Spec: Judge Slice](03_phase_judge.md)**
|
| 137 |
-
4. **[Phase 4 Spec: UI & Loop](04_phase_ui.md)**
|
| 138 |
-
5. **[Phase 5 Spec: Magentic Integration](05_phase_magentic.md)**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
*
|
|
|
|
| 115 |
|
| 116 |
---
|
| 117 |
|
| 118 |
+
### **Phase 5: Magentic Integration** β
COMPLETE
|
| 119 |
|
| 120 |
*Goal: Upgrade orchestrator to use Microsoft Agent Framework patterns.*
|
| 121 |
|
| 122 |
+
- [x] Wrap SearchHandler as `AgentProtocol` (SearchAgent) with strict protocol compliance.
|
| 123 |
+
- [x] Wrap JudgeHandler as `AgentProtocol` (JudgeAgent) with strict protocol compliance.
|
| 124 |
+
- [x] Implement `MagenticOrchestrator` using `MagenticBuilder`.
|
| 125 |
+
- [x] Create factory pattern for switching implementations.
|
| 126 |
- **Deliverable**: Same API, better multi-agent orchestration engine.
|
| 127 |
|
| 128 |
+
---
|
| 129 |
+
|
| 130 |
+
### **Phase 6: Embeddings & Semantic Search**
|
| 131 |
+
|
| 132 |
+
*Goal: Add vector search for semantic evidence retrieval.*
|
| 133 |
+
|
| 134 |
+
- [ ] Implement `EmbeddingService` with ChromaDB.
|
| 135 |
+
- [ ] Add semantic deduplication to SearchAgent.
|
| 136 |
+
- [ ] Enable semantic search for related evidence.
|
| 137 |
+
- [ ] Store embeddings in shared context.
|
| 138 |
+
- **Deliverable**: Find semantically related papers, not just keyword matches.
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
|
| 142 |
+
### **Phase 7: Hypothesis Agent**
|
| 143 |
+
|
| 144 |
+
*Goal: Generate scientific hypotheses to guide targeted searches.*
|
| 145 |
+
|
| 146 |
+
- [ ] Implement `MechanismHypothesis` and `HypothesisAssessment` models.
|
| 147 |
+
- [ ] Implement `HypothesisAgent` for mechanistic reasoning.
|
| 148 |
+
- [ ] Add hypothesis-driven search queries.
|
| 149 |
+
- [ ] Integrate into Magentic workflow.
|
| 150 |
+
- **Deliverable**: Drug β Target β Pathway β Effect hypotheses that guide research.
|
| 151 |
+
|
| 152 |
+
---
|
| 153 |
+
|
| 154 |
+
### **Phase 8: Report Agent**
|
| 155 |
+
|
| 156 |
+
*Goal: Generate structured scientific reports with proper citations.*
|
| 157 |
+
|
| 158 |
+
- [ ] Implement `ResearchReport` model with all sections.
|
| 159 |
+
- [ ] Implement `ReportAgent` for synthesis.
|
| 160 |
+
- [ ] Include methodology, limitations, formatted references.
|
| 161 |
+
- [ ] Integrate as final synthesis step in Magentic workflow.
|
| 162 |
+
- **Deliverable**: Publication-quality research reports.
|
| 163 |
+
|
| 164 |
+
---
|
| 165 |
+
|
| 166 |
+
## Complete Architecture (Phases 1-8)
|
| 167 |
+
|
| 168 |
+
```
|
| 169 |
+
User Query
|
| 170 |
+
β
|
| 171 |
+
Gradio UI (Phase 4)
|
| 172 |
+
β
|
| 173 |
+
Magentic Manager (Phase 5)
|
| 174 |
+
βββ SearchAgent (Phase 2+5) ββ PubMed + Web + VectorDB (Phase 6)
|
| 175 |
+
βββ HypothesisAgent (Phase 7) ββ Mechanistic Reasoning
|
| 176 |
+
βββ JudgeAgent (Phase 3+5) ββ Evidence Assessment
|
| 177 |
+
βββ ReportAgent (Phase 8) ββ Final Synthesis
|
| 178 |
+
β
|
| 179 |
+
Structured Research Report
|
| 180 |
+
```
|
| 181 |
|
| 182 |
---
|
| 183 |
|
| 184 |
## Spec Documents
|
| 185 |
|
| 186 |
+
1. **[Phase 1 Spec: Foundation](01_phase_foundation.md)** β
|
| 187 |
+
2. **[Phase 2 Spec: Search Slice](02_phase_search.md)** β
|
| 188 |
+
3. **[Phase 3 Spec: Judge Slice](03_phase_judge.md)** β
|
| 189 |
+
4. **[Phase 4 Spec: UI & Loop](04_phase_ui.md)** β
|
| 190 |
+
5. **[Phase 5 Spec: Magentic Integration](05_phase_magentic.md)** β
|
| 191 |
+
6. **[Phase 6 Spec: Embeddings & Semantic Search](06_phase_embeddings.md)**
|
| 192 |
+
7. **[Phase 7 Spec: Hypothesis Agent](07_phase_hypothesis.md)**
|
| 193 |
+
8. **[Phase 8 Spec: Report Agent](08_phase_report.md)**
|
| 194 |
+
|
| 195 |
+
---
|
| 196 |
+
|
| 197 |
+
## Progress Summary
|
| 198 |
+
|
| 199 |
+
| Phase | Status | Deliverable |
|
| 200 |
+
|-------|--------|-------------|
|
| 201 |
+
| Phase 1: Foundation | β
COMPLETE | CI-ready repo with uv/pytest |
|
| 202 |
+
| Phase 2: Search | β
COMPLETE | PubMed + Web search |
|
| 203 |
+
| Phase 3: Judge | β
COMPLETE | LLM evidence assessment |
|
| 204 |
+
| Phase 4: UI & Loop | β
COMPLETE | Working Gradio app |
|
| 205 |
+
| Phase 5: Magentic | β
COMPLETE | Multi-agent orchestration |
|
| 206 |
+
| Phase 6: Embeddings | π SPEC READY | Semantic search |
|
| 207 |
+
| Phase 7: Hypothesis | π SPEC READY | Mechanistic reasoning |
|
| 208 |
+
| Phase 8: Report | π SPEC READY | Structured reports |
|
| 209 |
|
| 210 |
+
*Phases 1-5 completed in ONE DAY. Phases 6-8 specs ready for implementation.*
|