Spaces:
Running
Running
Commit
Β·
53bf395
1
Parent(s):
ecbc47b
feat(phase6): implement embeddings for semantic search and deduplication
Browse files- Introduced `EmbeddingService` for handling text embeddings using ChromaDB.
- Updated `SearchAgent` to utilize embeddings for deduplication and semantic search.
- Enhanced the MagenticOrchestrator to support embedding-driven queries.
- Added comprehensive unit tests for the new embedding functionality.
- Improved search capabilities by allowing retrieval of semantically related evidence.
docs/implementation/06_phase_embeddings.md
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Phase 6 Implementation Spec: Embeddings & Semantic Search
|
| 2 |
+
|
| 3 |
+
**Goal**: Add vector search for semantic evidence retrieval.
|
| 4 |
+
**Philosophy**: "Find what you mean, not just what you type."
|
| 5 |
+
**Prerequisite**: Phase 5 complete (Magentic working)
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 1. Why Embeddings?
|
| 10 |
+
|
| 11 |
+
Current limitation: **Keyword-only search misses semantically related papers.**
|
| 12 |
+
|
| 13 |
+
Example problem:
|
| 14 |
+
- User searches: "metformin alzheimer"
|
| 15 |
+
- PubMed returns: Papers with exact keywords
|
| 16 |
+
- MISSED: Papers about "AMPK activation neuroprotection" (same mechanism, different words)
|
| 17 |
+
|
| 18 |
+
With embeddings:
|
| 19 |
+
- Embed the query AND all evidence
|
| 20 |
+
- Find semantically similar papers even without keyword match
|
| 21 |
+
- Deduplicate by meaning, not just URL
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## 2. Architecture
|
| 26 |
+
|
| 27 |
+
### Current (Phase 5)
|
| 28 |
+
```
|
| 29 |
+
Query β SearchAgent β PubMed/Web (keyword) β Evidence
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
### Phase 6
|
| 33 |
+
```
|
| 34 |
+
Query β Embed(Query) β SearchAgent
|
| 35 |
+
βββ PubMed/Web (keyword) β Evidence
|
| 36 |
+
βββ VectorDB (semantic) β Related Evidence
|
| 37 |
+
β
|
| 38 |
+
Evidence β Embed β Store
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### Shared Context Enhancement
|
| 42 |
+
```python
|
| 43 |
+
# Current
|
| 44 |
+
evidence_store = {"current": []}
|
| 45 |
+
|
| 46 |
+
# Phase 6
|
| 47 |
+
evidence_store = {
|
| 48 |
+
"current": [], # Raw evidence
|
| 49 |
+
"embeddings": {}, # URL -> embedding vector
|
| 50 |
+
"vector_index": None, # ChromaDB collection
|
| 51 |
+
}
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## 3. Technology Choice
|
| 57 |
+
|
| 58 |
+
### ChromaDB (Recommended)
|
| 59 |
+
- **Free**, open-source, local-first
|
| 60 |
+
- No API keys, no cloud dependency
|
| 61 |
+
- Supports sentence-transformers out of the box
|
| 62 |
+
- Perfect for hackathon (no infra setup)
|
| 63 |
+
|
| 64 |
+
### Embedding Model
|
| 65 |
+
- `sentence-transformers/all-MiniLM-L6-v2` (fast, good quality)
|
| 66 |
+
- Or `BAAI/bge-small-en-v1.5` (better quality, still fast)
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
## 4. Implementation
|
| 71 |
+
|
| 72 |
+
### 4.1 Dependencies
|
| 73 |
+
|
| 74 |
+
Add to `pyproject.toml`:
|
| 75 |
+
```toml
|
| 76 |
+
[project.optional-dependencies]
|
| 77 |
+
embeddings = [
|
| 78 |
+
"chromadb>=0.4.0",
|
| 79 |
+
"sentence-transformers>=2.2.0",
|
| 80 |
+
]
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
### 4.2 Embedding Service (`src/services/embeddings.py`)
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
"""Embedding service for semantic search."""
|
| 87 |
+
from typing import List
|
| 88 |
+
import chromadb
|
| 89 |
+
from sentence_transformers import SentenceTransformer
|
| 90 |
+
|
| 91 |
+
class EmbeddingService:
|
| 92 |
+
"""Handles text embedding and vector storage."""
|
| 93 |
+
|
| 94 |
+
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
|
| 95 |
+
self._model = SentenceTransformer(model_name)
|
| 96 |
+
self._client = chromadb.Client() # In-memory for hackathon
|
| 97 |
+
self._collection = self._client.create_collection(
|
| 98 |
+
name="evidence",
|
| 99 |
+
metadata={"hnsw:space": "cosine"}
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def embed(self, text: str) -> List[float]:
|
| 103 |
+
"""Embed a single text."""
|
| 104 |
+
return self._model.encode(text).tolist()
|
| 105 |
+
|
| 106 |
+
def add_evidence(self, evidence_id: str, content: str, metadata: dict) -> None:
|
| 107 |
+
"""Add evidence to vector store."""
|
| 108 |
+
embedding = self.embed(content)
|
| 109 |
+
self._collection.add(
|
| 110 |
+
ids=[evidence_id],
|
| 111 |
+
embeddings=[embedding],
|
| 112 |
+
metadatas=[metadata],
|
| 113 |
+
documents=[content]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def search_similar(self, query: str, n_results: int = 5) -> List[dict]:
|
| 117 |
+
"""Find semantically similar evidence."""
|
| 118 |
+
query_embedding = self.embed(query)
|
| 119 |
+
results = self._collection.query(
|
| 120 |
+
query_embeddings=[query_embedding],
|
| 121 |
+
n_results=n_results
|
| 122 |
+
)
|
| 123 |
+
return [
|
| 124 |
+
{"id": id, "content": doc, "metadata": meta, "distance": dist}
|
| 125 |
+
for id, doc, meta, dist in zip(
|
| 126 |
+
results["ids"][0],
|
| 127 |
+
results["documents"][0],
|
| 128 |
+
results["metadatas"][0],
|
| 129 |
+
results["distances"][0]
|
| 130 |
+
)
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
def deduplicate(self, new_evidence: List, threshold: float = 0.9) -> List:
|
| 134 |
+
"""Remove semantically duplicate evidence."""
|
| 135 |
+
unique = []
|
| 136 |
+
for evidence in new_evidence:
|
| 137 |
+
similar = self.search_similar(evidence.content, n_results=1)
|
| 138 |
+
if not similar or similar[0]["distance"] > (1 - threshold):
|
| 139 |
+
unique.append(evidence)
|
| 140 |
+
self.add_evidence(
|
| 141 |
+
evidence_id=evidence.citation.url,
|
| 142 |
+
content=evidence.content,
|
| 143 |
+
metadata={"source": evidence.citation.source}
|
| 144 |
+
)
|
| 145 |
+
return unique
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
### 4.3 Enhanced SearchAgent (`src/agents/search_agent.py`)
|
| 149 |
+
|
| 150 |
+
Update SearchAgent to use embeddings:
|
| 151 |
+
|
| 152 |
+
```python
|
| 153 |
+
class SearchAgent(BaseAgent):
|
| 154 |
+
def __init__(
|
| 155 |
+
self,
|
| 156 |
+
search_handler: SearchHandlerProtocol,
|
| 157 |
+
evidence_store: dict,
|
| 158 |
+
embedding_service: EmbeddingService | None = None, # NEW
|
| 159 |
+
):
|
| 160 |
+
# ... existing init ...
|
| 161 |
+
self._embeddings = embedding_service
|
| 162 |
+
|
| 163 |
+
async def run(self, messages, *, thread=None, **kwargs) -> AgentRunResponse:
|
| 164 |
+
# ... extract query ...
|
| 165 |
+
|
| 166 |
+
# Execute keyword search
|
| 167 |
+
result = await self._handler.execute(query, max_results_per_tool=10)
|
| 168 |
+
|
| 169 |
+
# Semantic deduplication (NEW)
|
| 170 |
+
if self._embeddings:
|
| 171 |
+
unique_evidence = self._embeddings.deduplicate(result.evidence)
|
| 172 |
+
|
| 173 |
+
# Also search for semantically related evidence
|
| 174 |
+
related = self._embeddings.search_similar(query, n_results=5)
|
| 175 |
+
# Add related evidence not already in results
|
| 176 |
+
# ... merge logic ...
|
| 177 |
+
|
| 178 |
+
# ... rest of method ...
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
### 4.4 Semantic Expansion in Orchestrator
|
| 182 |
+
|
| 183 |
+
The MagenticOrchestrator can use embeddings to expand queries:
|
| 184 |
+
|
| 185 |
+
```python
|
| 186 |
+
# In task instruction
|
| 187 |
+
task = f"""Research drug repurposing opportunities for: {query}
|
| 188 |
+
|
| 189 |
+
The system has semantic search enabled. When evidence is found:
|
| 190 |
+
1. Related concepts will be automatically surfaced
|
| 191 |
+
2. Duplicates are removed by meaning, not just URL
|
| 192 |
+
3. Use the surfaced related concepts to refine searches
|
| 193 |
+
"""
|
| 194 |
+
```
|
| 195 |
+
|
| 196 |
+
---
|
| 197 |
+
|
| 198 |
+
## 5. Directory Structure After Phase 6
|
| 199 |
+
|
| 200 |
+
```
|
| 201 |
+
src/
|
| 202 |
+
βββ services/ # NEW
|
| 203 |
+
β βββ __init__.py
|
| 204 |
+
β βββ embeddings.py # EmbeddingService
|
| 205 |
+
βββ agents/
|
| 206 |
+
β βββ search_agent.py # Updated with embeddings
|
| 207 |
+
β βββ judge_agent.py
|
| 208 |
+
βββ ...
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
---
|
| 212 |
+
|
| 213 |
+
## 6. Tests
|
| 214 |
+
|
| 215 |
+
### 6.1 Unit Tests (`tests/unit/services/test_embeddings.py`)
|
| 216 |
+
|
| 217 |
+
```python
|
| 218 |
+
"""Unit tests for EmbeddingService."""
|
| 219 |
+
import pytest
|
| 220 |
+
from src.services.embeddings import EmbeddingService
|
| 221 |
+
|
| 222 |
+
class TestEmbeddingService:
|
| 223 |
+
def test_embed_returns_vector(self):
|
| 224 |
+
"""Embedding should return a float vector."""
|
| 225 |
+
service = EmbeddingService()
|
| 226 |
+
embedding = service.embed("metformin diabetes")
|
| 227 |
+
assert isinstance(embedding, list)
|
| 228 |
+
assert len(embedding) > 0
|
| 229 |
+
assert all(isinstance(x, float) for x in embedding)
|
| 230 |
+
|
| 231 |
+
def test_similar_texts_have_close_embeddings(self):
|
| 232 |
+
"""Semantically similar texts should have similar embeddings."""
|
| 233 |
+
service = EmbeddingService()
|
| 234 |
+
e1 = service.embed("metformin treats diabetes")
|
| 235 |
+
e2 = service.embed("metformin is used for diabetes treatment")
|
| 236 |
+
e3 = service.embed("the weather is sunny today")
|
| 237 |
+
|
| 238 |
+
# Cosine similarity helper
|
| 239 |
+
from numpy import dot
|
| 240 |
+
from numpy.linalg import norm
|
| 241 |
+
cosine = lambda a, b: dot(a, b) / (norm(a) * norm(b))
|
| 242 |
+
|
| 243 |
+
# Similar texts should be closer
|
| 244 |
+
assert cosine(e1, e2) > cosine(e1, e3)
|
| 245 |
+
|
| 246 |
+
def test_add_and_search(self):
|
| 247 |
+
"""Should be able to add evidence and search for similar."""
|
| 248 |
+
service = EmbeddingService()
|
| 249 |
+
service.add_evidence(
|
| 250 |
+
evidence_id="test1",
|
| 251 |
+
content="Metformin activates AMPK pathway",
|
| 252 |
+
metadata={"source": "pubmed"}
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
results = service.search_similar("AMPK activation drugs", n_results=1)
|
| 256 |
+
assert len(results) == 1
|
| 257 |
+
assert "AMPK" in results[0]["content"]
|
| 258 |
+
```
|
| 259 |
+
|
| 260 |
+
---
|
| 261 |
+
|
| 262 |
+
## 7. Definition of Done
|
| 263 |
+
|
| 264 |
+
Phase 6 is **COMPLETE** when:
|
| 265 |
+
|
| 266 |
+
1. `EmbeddingService` implemented with ChromaDB
|
| 267 |
+
2. SearchAgent uses embeddings for deduplication
|
| 268 |
+
3. Semantic search surfaces related evidence
|
| 269 |
+
4. All unit tests pass
|
| 270 |
+
5. Integration test shows improved recall (finds related papers)
|
| 271 |
+
|
| 272 |
+
---
|
| 273 |
+
|
| 274 |
+
## 8. Value Delivered
|
| 275 |
+
|
| 276 |
+
| Before (Phase 5) | After (Phase 6) |
|
| 277 |
+
|------------------|-----------------|
|
| 278 |
+
| Keyword-only search | Semantic + keyword search |
|
| 279 |
+
| URL-based deduplication | Meaning-based deduplication |
|
| 280 |
+
| Miss related papers | Surface related concepts |
|
| 281 |
+
| Exact match required | Fuzzy semantic matching |
|
| 282 |
+
|
| 283 |
+
**Real example improvement:**
|
| 284 |
+
- Query: "metformin alzheimer"
|
| 285 |
+
- Before: Only papers mentioning both words
|
| 286 |
+
- After: Also finds "AMPK neuroprotection", "biguanide cognitive", etc.
|
docs/implementation/07_phase_hypothesis.md
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Phase 7 Implementation Spec: Hypothesis Agent
|
| 2 |
+
|
| 3 |
+
**Goal**: Add an agent that generates scientific hypotheses to guide targeted searches.
|
| 4 |
+
**Philosophy**: "Don't just find evidenceβunderstand the mechanisms."
|
| 5 |
+
**Prerequisite**: Phase 6 complete (Embeddings working)
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 1. Why Hypothesis Agent?
|
| 10 |
+
|
| 11 |
+
Current limitation: **Search is reactive, not hypothesis-driven.**
|
| 12 |
+
|
| 13 |
+
Current flow:
|
| 14 |
+
1. User asks about "metformin alzheimer"
|
| 15 |
+
2. Search finds papers
|
| 16 |
+
3. Judge says "need more evidence"
|
| 17 |
+
4. Search again with slightly different keywords
|
| 18 |
+
|
| 19 |
+
With Hypothesis Agent:
|
| 20 |
+
1. User asks about "metformin alzheimer"
|
| 21 |
+
2. Search finds initial papers
|
| 22 |
+
3. **Hypothesis Agent analyzes**: "Evidence suggests metformin β AMPK activation β autophagy β amyloid clearance"
|
| 23 |
+
4. Search can now target: "metformin AMPK", "autophagy neurodegeneration", "amyloid clearance drugs"
|
| 24 |
+
|
| 25 |
+
**Key insight**: Scientific research is hypothesis-driven. The agent should think like a researcher.
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## 2. Architecture
|
| 30 |
+
|
| 31 |
+
### Current (Phase 6)
|
| 32 |
+
```
|
| 33 |
+
User Query β Magentic Manager
|
| 34 |
+
βββ SearchAgent β Evidence
|
| 35 |
+
βββ JudgeAgent β Sufficient? β Synthesize/Continue
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
### Phase 7
|
| 39 |
+
```
|
| 40 |
+
User Query β Magentic Manager
|
| 41 |
+
βββ SearchAgent β Evidence
|
| 42 |
+
βββ HypothesisAgent β Mechanistic Hypotheses β NEW
|
| 43 |
+
βββ JudgeAgent β Sufficient? β Synthesize/Continue
|
| 44 |
+
β
|
| 45 |
+
Uses hypotheses to guide next search
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Shared Context Enhancement
|
| 49 |
+
```python
|
| 50 |
+
evidence_store = {
|
| 51 |
+
"current": [],
|
| 52 |
+
"embeddings": {},
|
| 53 |
+
"vector_index": None,
|
| 54 |
+
"hypotheses": [], # NEW: Generated hypotheses
|
| 55 |
+
"tested_hypotheses": [], # NEW: Hypotheses with supporting/contradicting evidence
|
| 56 |
+
}
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## 3. Hypothesis Model
|
| 62 |
+
|
| 63 |
+
### 3.1 Data Model (`src/utils/models.py`)
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
class MechanismHypothesis(BaseModel):
|
| 67 |
+
"""A scientific hypothesis about drug mechanism."""
|
| 68 |
+
|
| 69 |
+
drug: str = Field(description="The drug being studied")
|
| 70 |
+
target: str = Field(description="Molecular target (e.g., AMPK, mTOR)")
|
| 71 |
+
pathway: str = Field(description="Biological pathway affected")
|
| 72 |
+
effect: str = Field(description="Downstream effect on disease")
|
| 73 |
+
confidence: float = Field(ge=0, le=1, description="Confidence in hypothesis")
|
| 74 |
+
supporting_evidence: list[str] = Field(
|
| 75 |
+
default_factory=list,
|
| 76 |
+
description="PMIDs or URLs supporting this hypothesis"
|
| 77 |
+
)
|
| 78 |
+
contradicting_evidence: list[str] = Field(
|
| 79 |
+
default_factory=list,
|
| 80 |
+
description="PMIDs or URLs contradicting this hypothesis"
|
| 81 |
+
)
|
| 82 |
+
search_suggestions: list[str] = Field(
|
| 83 |
+
default_factory=list,
|
| 84 |
+
description="Suggested searches to test this hypothesis"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def to_search_queries(self) -> list[str]:
|
| 88 |
+
"""Generate search queries to test this hypothesis."""
|
| 89 |
+
return [
|
| 90 |
+
f"{self.drug} {self.target}",
|
| 91 |
+
f"{self.target} {self.pathway}",
|
| 92 |
+
f"{self.pathway} {self.effect}",
|
| 93 |
+
*self.search_suggestions
|
| 94 |
+
]
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### 3.2 Hypothesis Assessment
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
class HypothesisAssessment(BaseModel):
|
| 101 |
+
"""Assessment of evidence against hypotheses."""
|
| 102 |
+
|
| 103 |
+
hypotheses: list[MechanismHypothesis]
|
| 104 |
+
primary_hypothesis: MechanismHypothesis | None = Field(
|
| 105 |
+
description="Most promising hypothesis based on current evidence"
|
| 106 |
+
)
|
| 107 |
+
knowledge_gaps: list[str] = Field(
|
| 108 |
+
description="What we don't know yet"
|
| 109 |
+
)
|
| 110 |
+
recommended_searches: list[str] = Field(
|
| 111 |
+
description="Searches to fill knowledge gaps"
|
| 112 |
+
)
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
## 4. Implementation
|
| 118 |
+
|
| 119 |
+
### 4.1 Hypothesis Prompts (`src/prompts/hypothesis.py`)
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
"""Prompts for Hypothesis Agent."""
|
| 123 |
+
|
| 124 |
+
SYSTEM_PROMPT = """You are a biomedical research scientist specializing in drug repurposing.
|
| 125 |
+
|
| 126 |
+
Your role is to generate mechanistic hypotheses based on evidence.
|
| 127 |
+
|
| 128 |
+
A good hypothesis:
|
| 129 |
+
1. Proposes a MECHANISM: Drug β Target β Pathway β Effect
|
| 130 |
+
2. Is TESTABLE: Can be supported or refuted by literature search
|
| 131 |
+
3. Is SPECIFIC: Names actual molecular targets and pathways
|
| 132 |
+
4. Generates SEARCH QUERIES: Helps find more evidence
|
| 133 |
+
|
| 134 |
+
Example hypothesis format:
|
| 135 |
+
- Drug: Metformin
|
| 136 |
+
- Target: AMPK (AMP-activated protein kinase)
|
| 137 |
+
- Pathway: mTOR inhibition β autophagy activation
|
| 138 |
+
- Effect: Enhanced clearance of amyloid-beta in Alzheimer's
|
| 139 |
+
- Confidence: 0.7
|
| 140 |
+
- Search suggestions: ["metformin AMPK brain", "autophagy amyloid clearance"]
|
| 141 |
+
|
| 142 |
+
Be specific. Use actual gene/protein names when possible."""
|
| 143 |
+
|
| 144 |
+
def format_hypothesis_prompt(query: str, evidence: list) -> str:
|
| 145 |
+
"""Format prompt for hypothesis generation."""
|
| 146 |
+
evidence_text = "\n".join([
|
| 147 |
+
f"- {e.citation.title}: {e.content[:300]}..."
|
| 148 |
+
for e in evidence[:10]
|
| 149 |
+
])
|
| 150 |
+
|
| 151 |
+
return f"""Based on the following evidence about "{query}", generate mechanistic hypotheses.
|
| 152 |
+
|
| 153 |
+
## Evidence
|
| 154 |
+
{evidence_text}
|
| 155 |
+
|
| 156 |
+
## Task
|
| 157 |
+
1. Identify potential drug targets mentioned in the evidence
|
| 158 |
+
2. Propose mechanism hypotheses (Drug β Target β Pathway β Effect)
|
| 159 |
+
3. Rate confidence based on evidence strength
|
| 160 |
+
4. Suggest searches to test each hypothesis
|
| 161 |
+
|
| 162 |
+
Generate 2-4 hypotheses, prioritized by confidence."""
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
### 4.2 Hypothesis Agent (`src/agents/hypothesis_agent.py`)
|
| 166 |
+
|
| 167 |
+
```python
|
| 168 |
+
"""Hypothesis agent for mechanistic reasoning."""
|
| 169 |
+
from collections.abc import AsyncIterable
|
| 170 |
+
from typing import Any
|
| 171 |
+
|
| 172 |
+
from agent_framework import (
|
| 173 |
+
AgentRunResponse,
|
| 174 |
+
AgentRunResponseUpdate,
|
| 175 |
+
AgentThread,
|
| 176 |
+
BaseAgent,
|
| 177 |
+
ChatMessage,
|
| 178 |
+
Role,
|
| 179 |
+
)
|
| 180 |
+
from pydantic_ai import Agent
|
| 181 |
+
|
| 182 |
+
from src.prompts.hypothesis import SYSTEM_PROMPT, format_hypothesis_prompt
|
| 183 |
+
from src.utils.config import settings
|
| 184 |
+
from src.utils.models import Evidence, HypothesisAssessment
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class HypothesisAgent(BaseAgent):
|
| 188 |
+
"""Generates mechanistic hypotheses based on evidence."""
|
| 189 |
+
|
| 190 |
+
def __init__(
|
| 191 |
+
self,
|
| 192 |
+
evidence_store: dict[str, list[Evidence]],
|
| 193 |
+
) -> None:
|
| 194 |
+
super().__init__(
|
| 195 |
+
name="HypothesisAgent",
|
| 196 |
+
description="Generates scientific hypotheses about drug mechanisms to guide research",
|
| 197 |
+
)
|
| 198 |
+
self._evidence_store = evidence_store
|
| 199 |
+
self._agent = Agent(
|
| 200 |
+
model=settings.llm_provider, # Uses configured LLM
|
| 201 |
+
output_type=HypothesisAssessment,
|
| 202 |
+
system_prompt=SYSTEM_PROMPT,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
async def run(
|
| 206 |
+
self,
|
| 207 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 208 |
+
*,
|
| 209 |
+
thread: AgentThread | None = None,
|
| 210 |
+
**kwargs: Any,
|
| 211 |
+
) -> AgentRunResponse:
|
| 212 |
+
"""Generate hypotheses based on current evidence."""
|
| 213 |
+
# Extract query
|
| 214 |
+
query = self._extract_query(messages)
|
| 215 |
+
|
| 216 |
+
# Get current evidence
|
| 217 |
+
evidence = self._evidence_store.get("current", [])
|
| 218 |
+
|
| 219 |
+
if not evidence:
|
| 220 |
+
return AgentRunResponse(
|
| 221 |
+
messages=[ChatMessage(
|
| 222 |
+
role=Role.ASSISTANT,
|
| 223 |
+
text="No evidence available yet. Search for evidence first."
|
| 224 |
+
)],
|
| 225 |
+
response_id="hypothesis-no-evidence",
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Generate hypotheses
|
| 229 |
+
prompt = format_hypothesis_prompt(query, evidence)
|
| 230 |
+
result = await self._agent.run(prompt)
|
| 231 |
+
assessment = result.output
|
| 232 |
+
|
| 233 |
+
# Store hypotheses in shared context
|
| 234 |
+
existing = self._evidence_store.get("hypotheses", [])
|
| 235 |
+
self._evidence_store["hypotheses"] = existing + assessment.hypotheses
|
| 236 |
+
|
| 237 |
+
# Format response
|
| 238 |
+
response_text = self._format_response(assessment)
|
| 239 |
+
|
| 240 |
+
return AgentRunResponse(
|
| 241 |
+
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
|
| 242 |
+
response_id=f"hypothesis-{len(assessment.hypotheses)}",
|
| 243 |
+
additional_properties={"assessment": assessment.model_dump()},
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
def _format_response(self, assessment: HypothesisAssessment) -> str:
|
| 247 |
+
"""Format hypothesis assessment as markdown."""
|
| 248 |
+
lines = ["## Generated Hypotheses\n"]
|
| 249 |
+
|
| 250 |
+
for i, h in enumerate(assessment.hypotheses, 1):
|
| 251 |
+
lines.append(f"### Hypothesis {i} (Confidence: {h.confidence:.0%})")
|
| 252 |
+
lines.append(f"**Mechanism**: {h.drug} β {h.target} β {h.pathway} β {h.effect}")
|
| 253 |
+
lines.append(f"**Suggested searches**: {', '.join(h.search_suggestions)}\n")
|
| 254 |
+
|
| 255 |
+
if assessment.primary_hypothesis:
|
| 256 |
+
lines.append(f"### Primary Hypothesis")
|
| 257 |
+
h = assessment.primary_hypothesis
|
| 258 |
+
lines.append(f"{h.drug} β {h.target} β {h.pathway} β {h.effect}\n")
|
| 259 |
+
|
| 260 |
+
if assessment.knowledge_gaps:
|
| 261 |
+
lines.append("### Knowledge Gaps")
|
| 262 |
+
for gap in assessment.knowledge_gaps:
|
| 263 |
+
lines.append(f"- {gap}")
|
| 264 |
+
|
| 265 |
+
if assessment.recommended_searches:
|
| 266 |
+
lines.append("\n### Recommended Next Searches")
|
| 267 |
+
for search in assessment.recommended_searches:
|
| 268 |
+
lines.append(f"- `{search}`")
|
| 269 |
+
|
| 270 |
+
return "\n".join(lines)
|
| 271 |
+
|
| 272 |
+
def _extract_query(self, messages) -> str:
|
| 273 |
+
"""Extract query from messages."""
|
| 274 |
+
if isinstance(messages, str):
|
| 275 |
+
return messages
|
| 276 |
+
elif isinstance(messages, ChatMessage):
|
| 277 |
+
return messages.text or ""
|
| 278 |
+
elif isinstance(messages, list):
|
| 279 |
+
for msg in reversed(messages):
|
| 280 |
+
if isinstance(msg, ChatMessage) and msg.role == Role.USER:
|
| 281 |
+
return msg.text or ""
|
| 282 |
+
elif isinstance(msg, str):
|
| 283 |
+
return msg
|
| 284 |
+
return ""
|
| 285 |
+
|
| 286 |
+
async def run_stream(
|
| 287 |
+
self,
|
| 288 |
+
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
|
| 289 |
+
*,
|
| 290 |
+
thread: AgentThread | None = None,
|
| 291 |
+
**kwargs: Any,
|
| 292 |
+
) -> AsyncIterable[AgentRunResponseUpdate]:
|
| 293 |
+
"""Streaming wrapper."""
|
| 294 |
+
result = await self.run(messages, thread=thread, **kwargs)
|
| 295 |
+
yield AgentRunResponseUpdate(
|
| 296 |
+
messages=result.messages,
|
| 297 |
+
response_id=result.response_id
|
| 298 |
+
)
|
| 299 |
+
```
|
| 300 |
+
|
| 301 |
+
### 4.3 Update MagenticOrchestrator
|
| 302 |
+
|
| 303 |
+
Add HypothesisAgent to the workflow:
|
| 304 |
+
|
| 305 |
+
```python
|
| 306 |
+
# In MagenticOrchestrator.__init__
|
| 307 |
+
self._hypothesis_agent = HypothesisAgent(self._evidence_store)
|
| 308 |
+
|
| 309 |
+
# In workflow building
|
| 310 |
+
workflow = (
|
| 311 |
+
MagenticBuilder()
|
| 312 |
+
.participants(
|
| 313 |
+
searcher=search_agent,
|
| 314 |
+
hypothesizer=self._hypothesis_agent, # NEW
|
| 315 |
+
judge=judge_agent,
|
| 316 |
+
)
|
| 317 |
+
.with_standard_manager(...)
|
| 318 |
+
.build()
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
# Update task instruction
|
| 322 |
+
task = f"""Research drug repurposing opportunities for: {query}
|
| 323 |
+
|
| 324 |
+
Workflow:
|
| 325 |
+
1. SearchAgent: Find initial evidence from PubMed and web
|
| 326 |
+
2. HypothesisAgent: Generate mechanistic hypotheses (Drug β Target β Pathway β Effect)
|
| 327 |
+
3. SearchAgent: Use hypothesis-suggested queries for targeted search
|
| 328 |
+
4. JudgeAgent: Evaluate if evidence supports hypotheses
|
| 329 |
+
5. Repeat until confident or max rounds
|
| 330 |
+
|
| 331 |
+
Focus on:
|
| 332 |
+
- Identifying specific molecular targets
|
| 333 |
+
- Understanding mechanism of action
|
| 334 |
+
- Finding supporting/contradicting evidence for hypotheses
|
| 335 |
+
"""
|
| 336 |
+
```
|
| 337 |
+
|
| 338 |
+
---
|
| 339 |
+
|
| 340 |
+
## 5. Directory Structure After Phase 7
|
| 341 |
+
|
| 342 |
+
```
|
| 343 |
+
src/
|
| 344 |
+
βββ agents/
|
| 345 |
+
β βββ search_agent.py
|
| 346 |
+
β βββ judge_agent.py
|
| 347 |
+
β βββ hypothesis_agent.py # NEW
|
| 348 |
+
βββ prompts/
|
| 349 |
+
β βββ judge.py
|
| 350 |
+
β βββ hypothesis.py # NEW
|
| 351 |
+
βββ services/
|
| 352 |
+
β βββ embeddings.py
|
| 353 |
+
βββ utils/
|
| 354 |
+
βββ models.py # Updated with hypothesis models
|
| 355 |
+
```
|
| 356 |
+
|
| 357 |
+
---
|
| 358 |
+
|
| 359 |
+
## 6. Tests
|
| 360 |
+
|
| 361 |
+
### 6.1 Unit Tests (`tests/unit/agents/test_hypothesis_agent.py`)
|
| 362 |
+
|
| 363 |
+
```python
|
| 364 |
+
"""Unit tests for HypothesisAgent."""
|
| 365 |
+
import pytest
|
| 366 |
+
from unittest.mock import AsyncMock, MagicMock, patch
|
| 367 |
+
|
| 368 |
+
from src.agents.hypothesis_agent import HypothesisAgent
|
| 369 |
+
from src.utils.models import Citation, Evidence, HypothesisAssessment, MechanismHypothesis
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
@pytest.fixture
|
| 373 |
+
def sample_evidence():
|
| 374 |
+
return [
|
| 375 |
+
Evidence(
|
| 376 |
+
content="Metformin activates AMPK, which inhibits mTOR signaling...",
|
| 377 |
+
citation=Citation(
|
| 378 |
+
source="pubmed",
|
| 379 |
+
title="Metformin and AMPK",
|
| 380 |
+
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
|
| 381 |
+
date="2023"
|
| 382 |
+
)
|
| 383 |
+
)
|
| 384 |
+
]
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
@pytest.fixture
|
| 388 |
+
def mock_assessment():
|
| 389 |
+
return HypothesisAssessment(
|
| 390 |
+
hypotheses=[
|
| 391 |
+
MechanismHypothesis(
|
| 392 |
+
drug="Metformin",
|
| 393 |
+
target="AMPK",
|
| 394 |
+
pathway="mTOR inhibition",
|
| 395 |
+
effect="Reduced cancer cell proliferation",
|
| 396 |
+
confidence=0.75,
|
| 397 |
+
search_suggestions=["metformin AMPK cancer", "mTOR cancer therapy"]
|
| 398 |
+
)
|
| 399 |
+
],
|
| 400 |
+
primary_hypothesis=None,
|
| 401 |
+
knowledge_gaps=["Clinical trial data needed"],
|
| 402 |
+
recommended_searches=["metformin clinical trial cancer"]
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
@pytest.mark.asyncio
|
| 407 |
+
async def test_hypothesis_agent_generates_hypotheses(sample_evidence, mock_assessment):
|
| 408 |
+
"""HypothesisAgent should generate mechanistic hypotheses."""
|
| 409 |
+
store = {"current": sample_evidence, "hypotheses": []}
|
| 410 |
+
|
| 411 |
+
with patch("src.agents.hypothesis_agent.Agent") as MockAgent:
|
| 412 |
+
mock_result = MagicMock()
|
| 413 |
+
mock_result.output = mock_assessment
|
| 414 |
+
MockAgent.return_value.run = AsyncMock(return_value=mock_result)
|
| 415 |
+
|
| 416 |
+
agent = HypothesisAgent(store)
|
| 417 |
+
response = await agent.run("metformin cancer")
|
| 418 |
+
|
| 419 |
+
assert "AMPK" in response.messages[0].text
|
| 420 |
+
assert len(store["hypotheses"]) == 1
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
@pytest.mark.asyncio
|
| 424 |
+
async def test_hypothesis_agent_no_evidence():
|
| 425 |
+
"""HypothesisAgent should handle empty evidence gracefully."""
|
| 426 |
+
store = {"current": [], "hypotheses": []}
|
| 427 |
+
agent = HypothesisAgent(store)
|
| 428 |
+
|
| 429 |
+
response = await agent.run("test query")
|
| 430 |
+
|
| 431 |
+
assert "No evidence" in response.messages[0].text
|
| 432 |
+
```
|
| 433 |
+
|
| 434 |
+
---
|
| 435 |
+
|
| 436 |
+
## 7. Definition of Done
|
| 437 |
+
|
| 438 |
+
Phase 7 is **COMPLETE** when:
|
| 439 |
+
|
| 440 |
+
1. `MechanismHypothesis` and `HypothesisAssessment` models implemented
|
| 441 |
+
2. `HypothesisAgent` generates hypotheses from evidence
|
| 442 |
+
3. Hypotheses stored in shared context
|
| 443 |
+
4. Search queries generated from hypotheses
|
| 444 |
+
5. Magentic workflow includes HypothesisAgent
|
| 445 |
+
6. All unit tests pass
|
| 446 |
+
|
| 447 |
+
---
|
| 448 |
+
|
| 449 |
+
## 8. Value Delivered
|
| 450 |
+
|
| 451 |
+
| Before (Phase 6) | After (Phase 7) |
|
| 452 |
+
|------------------|-----------------|
|
| 453 |
+
| Reactive search | Hypothesis-driven search |
|
| 454 |
+
| Generic queries | Mechanism-targeted queries |
|
| 455 |
+
| No scientific reasoning | Drug β Target β Pathway β Effect |
|
| 456 |
+
| Judge says "need more" | Hypothesis says "search for X to test Y" |
|
| 457 |
+
|
| 458 |
+
**Real example improvement:**
|
| 459 |
+
- Query: "metformin alzheimer"
|
| 460 |
+
- Before: "metformin alzheimer mechanism", "metformin brain"
|
| 461 |
+
- After: "metformin AMPK activation", "AMPK autophagy neurodegeneration", "autophagy amyloid clearance"
|
| 462 |
+
|
| 463 |
+
The search becomes **scientifically targeted** rather than keyword variations.
|