Spaces:
Running
Running
Commit
·
cbd94a4
1
Parent(s):
3f90da8
refactor: address CodeRabbit review feedback for Mario integration
Browse filesCRITICAL fix:
- Centralize sandbox library versions (SANDBOX_LIBRARIES constant)
- Use shared config for both Modal image and LLM prompts
- Prevent version mismatch between generated code and execution
MAJOR fixes:
- Use run_in_executor() for blocking Modal calls in async context
- Lazy initialize code executor to avoid failing on import
- Remove redundant hypothesis check (unreachable code)
- Simplify semantic search placeholder (dead code paths)
Minor fixes:
- Update docs: Docker → Modal Sandbox terminology
- Fix docstring claiming ConfigurationError (only warns)
- docs/workflow-diagrams.md +5 -5
- examples/modal_demo/verify_sandbox.py +4 -4
- src/agents/analysis_agent.py +32 -23
- src/tools/code_execution.py +25 -8
docs/workflow-diagrams.md
CHANGED
|
@@ -398,7 +398,7 @@ graph TB
|
|
| 398 |
PubMed[PubMed API]
|
| 399 |
ArXiv[arXiv API]
|
| 400 |
BioRxiv[bioRxiv API]
|
| 401 |
-
|
| 402 |
ChromaDB[(ChromaDB)]
|
| 403 |
end
|
| 404 |
|
|
@@ -414,7 +414,7 @@ graph TB
|
|
| 414 |
Server1 --> PubMed
|
| 415 |
Server1 --> ArXiv
|
| 416 |
Server1 --> BioRxiv
|
| 417 |
-
Server2 -->
|
| 418 |
Server3 --> ChromaDB
|
| 419 |
|
| 420 |
style Manager fill:#ffe6e6
|
|
@@ -520,7 +520,7 @@ graph LR
|
|
| 520 |
DC -->|Preprint search| ArXiv[arXiv API<br/>Scientific preprints]
|
| 521 |
DC -->|Biology search| BioRxiv[bioRxiv API<br/>Biology preprints]
|
| 522 |
DC -->|Agent reasoning| Claude[Claude API<br/>Sonnet 4 / Opus]
|
| 523 |
-
DC -->|Code execution|
|
| 524 |
DC -->|Vector storage| Chroma[ChromaDB<br/>Embeddings & RAG]
|
| 525 |
|
| 526 |
DC -->|Deployed on| HF[HuggingFace Spaces<br/>Gradio 6.0]
|
|
@@ -529,7 +529,7 @@ graph LR
|
|
| 529 |
ArXiv -->|Results| DC
|
| 530 |
BioRxiv -->|Results| DC
|
| 531 |
Claude -->|Responses| DC
|
| 532 |
-
|
| 533 |
Chroma -->|Context| DC
|
| 534 |
|
| 535 |
DC -->|Research report| User
|
|
@@ -540,7 +540,7 @@ graph LR
|
|
| 540 |
style ArXiv fill:#e6f3ff
|
| 541 |
style BioRxiv fill:#e6f3ff
|
| 542 |
style Claude fill:#ffd6d6
|
| 543 |
-
style
|
| 544 |
style Chroma fill:#ffe6f0
|
| 545 |
style HF fill:#d4edda
|
| 546 |
```
|
|
|
|
| 398 |
PubMed[PubMed API]
|
| 399 |
ArXiv[arXiv API]
|
| 400 |
BioRxiv[bioRxiv API]
|
| 401 |
+
Modal[Modal Sandbox]
|
| 402 |
ChromaDB[(ChromaDB)]
|
| 403 |
end
|
| 404 |
|
|
|
|
| 414 |
Server1 --> PubMed
|
| 415 |
Server1 --> ArXiv
|
| 416 |
Server1 --> BioRxiv
|
| 417 |
+
Server2 --> Modal
|
| 418 |
Server3 --> ChromaDB
|
| 419 |
|
| 420 |
style Manager fill:#ffe6e6
|
|
|
|
| 520 |
DC -->|Preprint search| ArXiv[arXiv API<br/>Scientific preprints]
|
| 521 |
DC -->|Biology search| BioRxiv[bioRxiv API<br/>Biology preprints]
|
| 522 |
DC -->|Agent reasoning| Claude[Claude API<br/>Sonnet 4 / Opus]
|
| 523 |
+
DC -->|Code execution| Modal[Modal Sandbox<br/>Safe Python env]
|
| 524 |
DC -->|Vector storage| Chroma[ChromaDB<br/>Embeddings & RAG]
|
| 525 |
|
| 526 |
DC -->|Deployed on| HF[HuggingFace Spaces<br/>Gradio 6.0]
|
|
|
|
| 529 |
ArXiv -->|Results| DC
|
| 530 |
BioRxiv -->|Results| DC
|
| 531 |
Claude -->|Responses| DC
|
| 532 |
+
Modal -->|Output| DC
|
| 533 |
Chroma -->|Context| DC
|
| 534 |
|
| 535 |
DC -->|Research report| User
|
|
|
|
| 540 |
style ArXiv fill:#e6f3ff
|
| 541 |
style BioRxiv fill:#e6f3ff
|
| 542 |
style Claude fill:#ffd6d6
|
| 543 |
+
style Modal fill:#f0f0f0
|
| 544 |
style Chroma fill:#ffe6f0
|
| 545 |
style HF fill:#d4edda
|
| 546 |
```
|
examples/modal_demo/verify_sandbox.py
CHANGED
|
@@ -8,7 +8,7 @@ from pathlib import Path
|
|
| 8 |
|
| 9 |
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
| 10 |
|
| 11 |
-
from src.tools.code_execution import get_code_executor
|
| 12 |
|
| 13 |
|
| 14 |
def test_1_hostname_check():
|
|
@@ -145,9 +145,9 @@ print(f"statsmodels: {statsmodels.__version__}")
|
|
| 145 |
|
| 146 |
# Check if versions match what we specified in code_execution.py
|
| 147 |
expected_versions = {
|
| 148 |
-
"pandas:
|
| 149 |
-
"numpy:
|
| 150 |
-
"scipy:
|
| 151 |
}
|
| 152 |
|
| 153 |
matches = 0
|
|
|
|
| 8 |
|
| 9 |
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
| 10 |
|
| 11 |
+
from src.tools.code_execution import SANDBOX_LIBRARIES, get_code_executor
|
| 12 |
|
| 13 |
|
| 14 |
def test_1_hostname_check():
|
|
|
|
| 145 |
|
| 146 |
# Check if versions match what we specified in code_execution.py
|
| 147 |
expected_versions = {
|
| 148 |
+
f"pandas: {SANDBOX_LIBRARIES['pandas']}": True,
|
| 149 |
+
f"numpy: {SANDBOX_LIBRARIES['numpy']}": True,
|
| 150 |
+
f"scipy: {SANDBOX_LIBRARIES['scipy']}": True,
|
| 151 |
}
|
| 152 |
|
| 153 |
matches = 0
|
src/agents/analysis_agent.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
"""Analysis agent for statistical analysis using Modal code execution."""
|
| 2 |
|
|
|
|
| 3 |
from collections.abc import AsyncIterable
|
|
|
|
| 4 |
from typing import TYPE_CHECKING, Any
|
| 5 |
|
| 6 |
from agent_framework import (
|
|
@@ -15,7 +17,11 @@ from pydantic import BaseModel, Field
|
|
| 15 |
from pydantic_ai import Agent
|
| 16 |
|
| 17 |
from src.agent_factory.judges import get_model
|
| 18 |
-
from src.tools.code_execution import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
from src.utils.models import Evidence
|
| 20 |
|
| 21 |
if TYPE_CHECKING:
|
|
@@ -60,9 +66,15 @@ class AnalysisAgent(BaseAgent): # type: ignore[misc]
|
|
| 60 |
)
|
| 61 |
self._evidence_store = evidence_store
|
| 62 |
self._embeddings = embedding_service
|
| 63 |
-
self._code_executor =
|
| 64 |
self._agent: Agent[None, str] | None = None # LLM for code generation
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def _get_agent(self) -> Agent[None, str]:
|
| 67 |
"""Lazy initialization of LLM agent."""
|
| 68 |
if self._agent is None:
|
|
@@ -75,7 +87,8 @@ class AnalysisAgent(BaseAgent): # type: ignore[misc]
|
|
| 75 |
|
| 76 |
def _get_system_prompt(self) -> str:
|
| 77 |
"""System prompt for code generation."""
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
Your task: Generate Python code to analyze research evidence and test hypotheses.
|
| 81 |
|
|
@@ -89,12 +102,7 @@ Guidelines:
|
|
| 89 |
7. Set a variable called 'result' with final verdict
|
| 90 |
|
| 91 |
Available libraries:
|
| 92 |
-
|
| 93 |
-
- numpy==1.26.4
|
| 94 |
-
- scipy==1.11.4
|
| 95 |
-
- matplotlib==3.8.2
|
| 96 |
-
- scikit-learn==1.4.0
|
| 97 |
-
- statsmodels==0.14.1
|
| 98 |
|
| 99 |
Output format:
|
| 100 |
Return ONLY executable Python code, no explanations or markdown.
|
|
@@ -119,10 +127,8 @@ Return ONLY executable Python code, no explanations or markdown.
|
|
| 119 |
if not evidence:
|
| 120 |
return self._error_response("No evidence available. Run SearchAgent first.")
|
| 121 |
|
| 122 |
-
# Get primary hypothesis
|
| 123 |
-
primary = hypotheses[0]
|
| 124 |
-
if not primary:
|
| 125 |
-
return self._error_response("No primary hypothesis found.")
|
| 126 |
|
| 127 |
# Retrieve relevant evidence using RAG (if available)
|
| 128 |
relevant_evidence = await self._retrieve_relevant_evidence(primary, evidence)
|
|
@@ -136,8 +142,12 @@ Return ONLY executable Python code, no explanations or markdown.
|
|
| 136 |
code_result = await agent.run(code_prompt)
|
| 137 |
generated_code = code_result.output
|
| 138 |
|
| 139 |
-
# Execute code in Modal sandbox
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
if not execution_result["success"]:
|
| 143 |
return self._error_response(f"Code execution failed: {execution_result['error']}")
|
|
@@ -167,14 +177,13 @@ Return ONLY executable Python code, no explanations or markdown.
|
|
| 167 |
async def _retrieve_relevant_evidence(
|
| 168 |
self, hypothesis: Any, all_evidence: list[Evidence]
|
| 169 |
) -> list[Evidence]:
|
| 170 |
-
"""Retrieve most relevant evidence using RAG (if available).
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
#
|
| 177 |
-
# For now, just return all evidence
|
| 178 |
return all_evidence[:10]
|
| 179 |
|
| 180 |
def _create_code_generation_prompt(
|
|
|
|
| 1 |
"""Analysis agent for statistical analysis using Modal code execution."""
|
| 2 |
|
| 3 |
+
import asyncio
|
| 4 |
from collections.abc import AsyncIterable
|
| 5 |
+
from functools import partial
|
| 6 |
from typing import TYPE_CHECKING, Any
|
| 7 |
|
| 8 |
from agent_framework import (
|
|
|
|
| 17 |
from pydantic_ai import Agent
|
| 18 |
|
| 19 |
from src.agent_factory.judges import get_model
|
| 20 |
+
from src.tools.code_execution import (
|
| 21 |
+
CodeExecutionError,
|
| 22 |
+
get_code_executor,
|
| 23 |
+
get_sandbox_library_prompt,
|
| 24 |
+
)
|
| 25 |
from src.utils.models import Evidence
|
| 26 |
|
| 27 |
if TYPE_CHECKING:
|
|
|
|
| 66 |
)
|
| 67 |
self._evidence_store = evidence_store
|
| 68 |
self._embeddings = embedding_service
|
| 69 |
+
self._code_executor: Any = None # Lazy initialized
|
| 70 |
self._agent: Agent[None, str] | None = None # LLM for code generation
|
| 71 |
|
| 72 |
+
def _get_code_executor(self) -> Any:
|
| 73 |
+
"""Lazy initialization of code executor (avoids failing if Modal not configured)."""
|
| 74 |
+
if self._code_executor is None:
|
| 75 |
+
self._code_executor = get_code_executor()
|
| 76 |
+
return self._code_executor
|
| 77 |
+
|
| 78 |
def _get_agent(self) -> Agent[None, str]:
|
| 79 |
"""Lazy initialization of LLM agent."""
|
| 80 |
if self._agent is None:
|
|
|
|
| 87 |
|
| 88 |
def _get_system_prompt(self) -> str:
|
| 89 |
"""System prompt for code generation."""
|
| 90 |
+
library_versions = get_sandbox_library_prompt()
|
| 91 |
+
return f"""You are a biomedical data scientist specializing in statistical analysis.
|
| 92 |
|
| 93 |
Your task: Generate Python code to analyze research evidence and test hypotheses.
|
| 94 |
|
|
|
|
| 102 |
7. Set a variable called 'result' with final verdict
|
| 103 |
|
| 104 |
Available libraries:
|
| 105 |
+
{library_versions}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
Output format:
|
| 108 |
Return ONLY executable Python code, no explanations or markdown.
|
|
|
|
| 127 |
if not evidence:
|
| 128 |
return self._error_response("No evidence available. Run SearchAgent first.")
|
| 129 |
|
| 130 |
+
# Get primary hypothesis (guaranteed to exist after check above)
|
| 131 |
+
primary = hypotheses[0]
|
|
|
|
|
|
|
| 132 |
|
| 133 |
# Retrieve relevant evidence using RAG (if available)
|
| 134 |
relevant_evidence = await self._retrieve_relevant_evidence(primary, evidence)
|
|
|
|
| 142 |
code_result = await agent.run(code_prompt)
|
| 143 |
generated_code = code_result.output
|
| 144 |
|
| 145 |
+
# Execute code in Modal sandbox (run in thread to avoid blocking event loop)
|
| 146 |
+
loop = asyncio.get_running_loop()
|
| 147 |
+
executor = self._get_code_executor()
|
| 148 |
+
execution_result = await loop.run_in_executor(
|
| 149 |
+
None, partial(executor.execute, generated_code, timeout=120)
|
| 150 |
+
)
|
| 151 |
|
| 152 |
if not execution_result["success"]:
|
| 153 |
return self._error_response(f"Code execution failed: {execution_result['error']}")
|
|
|
|
| 177 |
async def _retrieve_relevant_evidence(
|
| 178 |
self, hypothesis: Any, all_evidence: list[Evidence]
|
| 179 |
) -> list[Evidence]:
|
| 180 |
+
"""Retrieve most relevant evidence using RAG (if available).
|
| 181 |
+
|
| 182 |
+
TODO: When embeddings service is available (self._embeddings),
|
| 183 |
+
use semantic search to find evidence most relevant to the hypothesis.
|
| 184 |
+
For now, returns top 10 evidence items.
|
| 185 |
+
"""
|
| 186 |
+
# Future: Use self._embeddings for semantic search
|
|
|
|
| 187 |
return all_evidence[:10]
|
| 188 |
|
| 189 |
def _create_code_generation_prompt(
|
src/tools/code_execution.py
CHANGED
|
@@ -11,6 +11,27 @@ import structlog
|
|
| 11 |
|
| 12 |
logger = structlog.get_logger(__name__)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
class CodeExecutionError(Exception):
|
| 16 |
"""Raised when code execution fails."""
|
|
@@ -45,8 +66,9 @@ class ModalCodeExecutor:
|
|
| 45 |
def __init__(self) -> None:
|
| 46 |
"""Initialize Modal code executor.
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
| 50 |
"""
|
| 51 |
# Check for Modal credentials
|
| 52 |
self.modal_token_id = os.getenv("MODAL_TOKEN_ID")
|
|
@@ -90,12 +112,7 @@ class ModalCodeExecutor:
|
|
| 90 |
|
| 91 |
# Define scientific computing image with common libraries
|
| 92 |
scientific_image = modal.Image.debian_slim(python_version="3.11").uv_pip_install(
|
| 93 |
-
|
| 94 |
-
"numpy==1.26.4",
|
| 95 |
-
"scipy==1.11.4",
|
| 96 |
-
"matplotlib==3.8.2",
|
| 97 |
-
"scikit-learn==1.4.0",
|
| 98 |
-
"statsmodels==0.14.1",
|
| 99 |
)
|
| 100 |
|
| 101 |
# Create sandbox with security restrictions
|
|
|
|
| 11 |
|
| 12 |
logger = structlog.get_logger(__name__)
|
| 13 |
|
| 14 |
+
# Shared library versions for Modal sandbox - used by both executor and LLM prompts
|
| 15 |
+
# Keep these in sync to avoid version mismatch between generated code and execution
|
| 16 |
+
SANDBOX_LIBRARIES: dict[str, str] = {
|
| 17 |
+
"pandas": "2.2.0",
|
| 18 |
+
"numpy": "1.26.4",
|
| 19 |
+
"scipy": "1.11.4",
|
| 20 |
+
"matplotlib": "3.8.2",
|
| 21 |
+
"scikit-learn": "1.4.0",
|
| 22 |
+
"statsmodels": "0.14.1",
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_sandbox_library_list() -> list[str]:
|
| 27 |
+
"""Get list of library==version strings for Modal image."""
|
| 28 |
+
return [f"{lib}=={ver}" for lib, ver in SANDBOX_LIBRARIES.items()]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_sandbox_library_prompt() -> str:
|
| 32 |
+
"""Get formatted library versions for LLM prompts."""
|
| 33 |
+
return "\n".join(f"- {lib}=={ver}" for lib, ver in SANDBOX_LIBRARIES.items())
|
| 34 |
+
|
| 35 |
|
| 36 |
class CodeExecutionError(Exception):
|
| 37 |
"""Raised when code execution fails."""
|
|
|
|
| 66 |
def __init__(self) -> None:
|
| 67 |
"""Initialize Modal code executor.
|
| 68 |
|
| 69 |
+
Note:
|
| 70 |
+
Logs a warning if Modal credentials are not configured.
|
| 71 |
+
Execution will fail at runtime without valid credentials.
|
| 72 |
"""
|
| 73 |
# Check for Modal credentials
|
| 74 |
self.modal_token_id = os.getenv("MODAL_TOKEN_ID")
|
|
|
|
| 112 |
|
| 113 |
# Define scientific computing image with common libraries
|
| 114 |
scientific_image = modal.Image.debian_slim(python_version="3.11").uv_pip_install(
|
| 115 |
+
*get_sandbox_library_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
# Create sandbox with security restrictions
|