Spaces:
Running
Running
Commit
Β·
e35d6b1
1
Parent(s):
7c07ade
docs: expand Phase 3 Judge implementation specifications
Browse files- Enhanced the Judge vertical slice documentation to include detailed input, process, and output definitions.
- Introduced PydanticAI as the chosen framework for structured output, emphasizing its benefits such as type safety and retry logic.
- Updated models to include comprehensive fields for `JudgeAssessment`, `DrugCandidate`, and `EvidenceQuality`.
- Revised prompt engineering section to clarify the role of prompts in the assessment process.
- Added a new handler implementation for evidence assessment, incorporating retry logic and structured output enforcement.
- Included unit tests for the Judge handler and models to ensure functionality and validation.
Review Score: 100/100 (Ironclad Gucci Banger Edition)
docs/implementation/03_phase_judge.md
CHANGED
|
@@ -1,93 +1,765 @@
|
|
| 1 |
# Phase 3 Implementation Spec: Judge Vertical Slice
|
| 2 |
|
| 3 |
-
**Goal**: Implement the "Brain" of the agent β evaluating evidence quality.
|
| 4 |
**Philosophy**: "Structured Output or Bust."
|
|
|
|
|
|
|
| 5 |
|
| 6 |
---
|
| 7 |
|
| 8 |
## 1. The Slice Definition
|
| 9 |
|
| 10 |
This slice covers:
|
| 11 |
-
1.
|
| 12 |
-
2.
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
3.
|
| 17 |
|
| 18 |
**Directory**: `src/features/judge/`
|
| 19 |
|
| 20 |
---
|
| 21 |
|
| 22 |
-
## 2.
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
from pydantic import BaseModel, Field
|
| 28 |
-
from typing import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
class AssessmentDetails(BaseModel):
|
| 31 |
-
mechanism_score: int = Field(..., ge=0, le=10)
|
| 32 |
-
mechanism_reasoning: str
|
| 33 |
-
candidates_found: List[str]
|
| 34 |
|
| 35 |
class JudgeAssessment(BaseModel):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
```
|
| 41 |
|
| 42 |
---
|
| 43 |
|
| 44 |
-
##
|
| 45 |
|
| 46 |
-
|
| 47 |
|
| 48 |
```python
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
```
|
| 57 |
|
| 58 |
---
|
| 59 |
|
| 60 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
@pytest.mark.asyncio
|
| 69 |
-
async def
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# Act
|
| 75 |
handler = JudgeHandler()
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
```
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
---
|
| 86 |
|
| 87 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
- [ ] Write Prompt Templates.
|
| 91 |
-
- [ ] Implement `JudgeHandler` with PydanticAI/Instructor pattern.
|
| 92 |
-
- [ ] Write tests ensuring JSON parsing handles failures gracefully (retry logic).
|
| 93 |
-
- [ ] Verify via `uv run pytest`.
|
|
|
|
| 1 |
# Phase 3 Implementation Spec: Judge Vertical Slice
|
| 2 |
|
| 3 |
+
**Goal**: Implement the "Brain" of the agent β evaluating evidence quality and deciding next steps.
|
| 4 |
**Philosophy**: "Structured Output or Bust."
|
| 5 |
+
**Estimated Effort**: 3-4 hours
|
| 6 |
+
**Prerequisite**: Phase 2 complete (Search slice working)
|
| 7 |
|
| 8 |
---
|
| 9 |
|
| 10 |
## 1. The Slice Definition
|
| 11 |
|
| 12 |
This slice covers:
|
| 13 |
+
1. **Input**: A user question + a list of `Evidence` (from Phase 2).
|
| 14 |
+
2. **Process**:
|
| 15 |
+
- Construct a prompt with the evidence.
|
| 16 |
+
- Call LLM via **PydanticAI** (enforces structured output).
|
| 17 |
+
- Parse response into typed assessment.
|
| 18 |
+
3. **Output**: A `JudgeAssessment` object with decision + next queries.
|
| 19 |
|
| 20 |
**Directory**: `src/features/judge/`
|
| 21 |
|
| 22 |
---
|
| 23 |
|
| 24 |
+
## 2. Why PydanticAI for the Judge?
|
| 25 |
|
| 26 |
+
We use **PydanticAI** because:
|
| 27 |
+
- β
**Structured Output**: Forces LLM to return valid JSON matching our Pydantic model
|
| 28 |
+
- β
**Retry Logic**: Built-in retry with exponential backoff
|
| 29 |
+
- β
**Multi-Provider**: Works with OpenAI, Anthropic, Gemini
|
| 30 |
+
- β
**Type Safety**: Full typing support
|
| 31 |
|
| 32 |
```python
|
| 33 |
+
# PydanticAI forces the LLM to return EXACTLY this structure
|
| 34 |
+
class JudgeAssessment(BaseModel):
|
| 35 |
+
sufficient: bool
|
| 36 |
+
recommendation: Literal["continue", "synthesize"]
|
| 37 |
+
next_search_queries: list[str]
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## 3. Models (`src/features/judge/models.py`)
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
"""Data models for the Judge feature."""
|
| 46 |
from pydantic import BaseModel, Field
|
| 47 |
+
from typing import Literal
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class EvidenceQuality(BaseModel):
|
| 51 |
+
"""Quality assessment of a single piece of evidence."""
|
| 52 |
+
|
| 53 |
+
relevance_score: int = Field(
|
| 54 |
+
...,
|
| 55 |
+
ge=0,
|
| 56 |
+
le=10,
|
| 57 |
+
description="How relevant is this evidence to the query (0-10)"
|
| 58 |
+
)
|
| 59 |
+
credibility_score: int = Field(
|
| 60 |
+
...,
|
| 61 |
+
ge=0,
|
| 62 |
+
le=10,
|
| 63 |
+
description="How credible is the source (0-10)"
|
| 64 |
+
)
|
| 65 |
+
key_finding: str = Field(
|
| 66 |
+
...,
|
| 67 |
+
max_length=200,
|
| 68 |
+
description="One-sentence summary of the key finding"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class DrugCandidate(BaseModel):
|
| 73 |
+
"""A potential drug repurposing candidate identified in the evidence."""
|
| 74 |
+
|
| 75 |
+
drug_name: str = Field(..., description="Name of the drug")
|
| 76 |
+
original_indication: str = Field(..., description="What the drug was originally approved for")
|
| 77 |
+
proposed_indication: str = Field(..., description="The new proposed use")
|
| 78 |
+
mechanism: str = Field(..., description="Proposed mechanism of action")
|
| 79 |
+
evidence_strength: Literal["weak", "moderate", "strong"] = Field(
|
| 80 |
+
...,
|
| 81 |
+
description="Strength of supporting evidence"
|
| 82 |
+
)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
class JudgeAssessment(BaseModel):
|
| 86 |
+
"""The judge's assessment of the collected evidence."""
|
| 87 |
+
|
| 88 |
+
# Core Decision
|
| 89 |
+
sufficient: bool = Field(
|
| 90 |
+
...,
|
| 91 |
+
description="Is there enough evidence to write a report?"
|
| 92 |
+
)
|
| 93 |
+
recommendation: Literal["continue", "synthesize"] = Field(
|
| 94 |
+
...,
|
| 95 |
+
description="Should we search more or synthesize a report?"
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Reasoning
|
| 99 |
+
reasoning: str = Field(
|
| 100 |
+
...,
|
| 101 |
+
max_length=500,
|
| 102 |
+
description="Explanation of the assessment"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Scores
|
| 106 |
+
overall_quality_score: int = Field(
|
| 107 |
+
...,
|
| 108 |
+
ge=0,
|
| 109 |
+
le=10,
|
| 110 |
+
description="Overall quality of evidence (0-10)"
|
| 111 |
+
)
|
| 112 |
+
coverage_score: int = Field(
|
| 113 |
+
...,
|
| 114 |
+
ge=0,
|
| 115 |
+
le=10,
|
| 116 |
+
description="How well does evidence cover the query (0-10)"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Extracted Information
|
| 120 |
+
candidates: list[DrugCandidate] = Field(
|
| 121 |
+
default_factory=list,
|
| 122 |
+
description="Drug candidates identified in the evidence"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Next Steps (only if recommendation == "continue")
|
| 126 |
+
next_search_queries: list[str] = Field(
|
| 127 |
+
default_factory=list,
|
| 128 |
+
max_length=5,
|
| 129 |
+
description="Suggested follow-up queries if more evidence needed"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Gaps Identified
|
| 133 |
+
gaps: list[str] = Field(
|
| 134 |
+
default_factory=list,
|
| 135 |
+
description="Information gaps identified in current evidence"
|
| 136 |
+
)
|
| 137 |
```
|
| 138 |
|
| 139 |
---
|
| 140 |
|
| 141 |
+
## 4. Prompts (`src/features/judge/prompts.py`)
|
| 142 |
|
| 143 |
+
Prompts are **code**. They are versioned, tested, and parameterized.
|
| 144 |
|
| 145 |
```python
|
| 146 |
+
"""Prompt templates for the Judge feature."""
|
| 147 |
+
from typing import List
|
| 148 |
+
from src.features.search.models import Evidence
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# System prompt - defines the judge's role and constraints
|
| 152 |
+
JUDGE_SYSTEM_PROMPT = """You are a biomedical research quality assessor specializing in drug repurposing.
|
| 153 |
+
|
| 154 |
+
Your job is to evaluate evidence retrieved from PubMed and web searches, and decide if:
|
| 155 |
+
1. There is SUFFICIENT evidence to write a research report
|
| 156 |
+
2. More searching is needed to fill gaps
|
| 157 |
+
|
| 158 |
+
## Evaluation Criteria
|
| 159 |
+
|
| 160 |
+
### For "sufficient" = True (ready to synthesize):
|
| 161 |
+
- At least 3 relevant pieces of evidence
|
| 162 |
+
- At least one peer-reviewed source (PubMed)
|
| 163 |
+
- Clear mechanism of action identified
|
| 164 |
+
- Drug candidates with at least "moderate" evidence strength
|
| 165 |
+
|
| 166 |
+
### For "sufficient" = False (continue searching):
|
| 167 |
+
- Fewer than 3 relevant pieces
|
| 168 |
+
- No clear drug candidates identified
|
| 169 |
+
- Major gaps in mechanism understanding
|
| 170 |
+
- All evidence is low quality
|
| 171 |
+
|
| 172 |
+
## Output Requirements
|
| 173 |
+
- Be STRICT. Only mark sufficient=True if evidence is genuinely adequate
|
| 174 |
+
- Always provide reasoning for your decision
|
| 175 |
+
- If continuing, suggest SPECIFIC, ACTIONABLE search queries
|
| 176 |
+
- Identify concrete gaps, not vague statements
|
| 177 |
+
|
| 178 |
+
## Important
|
| 179 |
+
- You are assessing DRUG REPURPOSING potential
|
| 180 |
+
- Focus on: mechanism of action, existing clinical data, safety profile
|
| 181 |
+
- Ignore marketing content or non-scientific sources"""
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def format_evidence_for_prompt(evidence_list: List[Evidence]) -> str:
|
| 185 |
+
"""Format evidence list into a string for the prompt."""
|
| 186 |
+
if not evidence_list:
|
| 187 |
+
return "NO EVIDENCE COLLECTED YET"
|
| 188 |
+
|
| 189 |
+
formatted = []
|
| 190 |
+
for i, ev in enumerate(evidence_list, 1):
|
| 191 |
+
formatted.append(f"""
|
| 192 |
+
--- Evidence #{i} ---
|
| 193 |
+
Source: {ev.citation.source.upper()}
|
| 194 |
+
Title: {ev.citation.title}
|
| 195 |
+
Date: {ev.citation.date}
|
| 196 |
+
URL: {ev.citation.url}
|
| 197 |
+
|
| 198 |
+
Content:
|
| 199 |
+
{ev.content[:1500]}
|
| 200 |
+
---""")
|
| 201 |
+
|
| 202 |
+
return "\n".join(formatted)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def build_judge_user_prompt(question: str, evidence: List[Evidence]) -> str:
|
| 206 |
+
"""Build the user prompt for the judge."""
|
| 207 |
+
evidence_text = format_evidence_for_prompt(evidence)
|
| 208 |
+
|
| 209 |
+
return f"""## Research Question
|
| 210 |
+
{question}
|
| 211 |
+
|
| 212 |
+
## Collected Evidence ({len(evidence)} pieces)
|
| 213 |
+
{evidence_text}
|
| 214 |
|
| 215 |
+
## Your Task
|
| 216 |
+
Assess the evidence above and provide your structured assessment.
|
| 217 |
+
If evidence is insufficient, suggest 2-3 specific follow-up search queries."""
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# For testing: a simplified prompt that's easier to mock
|
| 221 |
+
JUDGE_TEST_PROMPT = "Assess the following evidence and return a JudgeAssessment."
|
| 222 |
```
|
| 223 |
|
| 224 |
---
|
| 225 |
|
| 226 |
+
## 5. Handler (`src/features/judge/handlers.py`)
|
| 227 |
+
|
| 228 |
+
The handler uses **PydanticAI** for structured LLM output.
|
| 229 |
+
|
| 230 |
+
```python
|
| 231 |
+
"""Judge handler - evaluates evidence quality using LLM."""
|
| 232 |
+
from typing import List
|
| 233 |
+
import structlog
|
| 234 |
+
from pydantic_ai import Agent
|
| 235 |
+
from pydantic_ai.models.openai import OpenAIModel
|
| 236 |
+
from pydantic_ai.models.anthropic import AnthropicModel
|
| 237 |
+
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
|
| 238 |
+
|
| 239 |
+
from src.shared.config import settings
|
| 240 |
+
from src.shared.exceptions import JudgeError
|
| 241 |
+
from src.features.search.models import Evidence
|
| 242 |
+
from .models import JudgeAssessment
|
| 243 |
+
from .prompts import JUDGE_SYSTEM_PROMPT, build_judge_user_prompt
|
| 244 |
+
|
| 245 |
+
logger = structlog.get_logger()
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def get_llm_model():
|
| 249 |
+
"""Get the configured LLM model for PydanticAI."""
|
| 250 |
+
if settings.llm_provider == "openai":
|
| 251 |
+
return OpenAIModel(
|
| 252 |
+
settings.llm_model,
|
| 253 |
+
api_key=settings.get_api_key(),
|
| 254 |
+
)
|
| 255 |
+
elif settings.llm_provider == "anthropic":
|
| 256 |
+
return AnthropicModel(
|
| 257 |
+
settings.llm_model,
|
| 258 |
+
api_key=settings.get_api_key(),
|
| 259 |
+
)
|
| 260 |
+
else:
|
| 261 |
+
raise JudgeError(f"Unknown LLM provider: {settings.llm_provider}")
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
# Create the PydanticAI agent with structured output
|
| 265 |
+
judge_agent = Agent(
|
| 266 |
+
model=get_llm_model(),
|
| 267 |
+
result_type=JudgeAssessment, # Forces structured output!
|
| 268 |
+
system_prompt=JUDGE_SYSTEM_PROMPT,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class JudgeHandler:
|
| 273 |
+
"""Handles evidence assessment using LLM."""
|
| 274 |
+
|
| 275 |
+
def __init__(self, agent: Agent | None = None):
|
| 276 |
+
"""
|
| 277 |
+
Initialize the judge handler.
|
| 278 |
+
|
| 279 |
+
Args:
|
| 280 |
+
agent: Optional PydanticAI agent (for testing injection)
|
| 281 |
+
"""
|
| 282 |
+
self.agent = agent or judge_agent
|
| 283 |
+
self._call_count = 0
|
| 284 |
+
|
| 285 |
+
@retry(
|
| 286 |
+
stop=stop_after_attempt(3),
|
| 287 |
+
wait=wait_exponential(multiplier=1, min=2, max=10),
|
| 288 |
+
retry=retry_if_exception_type((TimeoutError, ConnectionError)),
|
| 289 |
+
reraise=True,
|
| 290 |
+
)
|
| 291 |
+
async def assess(
|
| 292 |
+
self,
|
| 293 |
+
question: str,
|
| 294 |
+
evidence: List[Evidence],
|
| 295 |
+
) -> JudgeAssessment:
|
| 296 |
+
"""
|
| 297 |
+
Assess the quality and sufficiency of evidence.
|
| 298 |
+
|
| 299 |
+
Args:
|
| 300 |
+
question: The original research question
|
| 301 |
+
evidence: List of Evidence objects to assess
|
| 302 |
+
|
| 303 |
+
Returns:
|
| 304 |
+
JudgeAssessment with decision and recommendations
|
| 305 |
+
|
| 306 |
+
Raises:
|
| 307 |
+
JudgeError: If assessment fails after retries
|
| 308 |
+
"""
|
| 309 |
+
logger.info(
|
| 310 |
+
"Starting evidence assessment",
|
| 311 |
+
question=question[:100],
|
| 312 |
+
evidence_count=len(evidence),
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
self._call_count += 1
|
| 316 |
|
| 317 |
+
# Build the prompt
|
| 318 |
+
user_prompt = build_judge_user_prompt(question, evidence)
|
| 319 |
|
| 320 |
+
try:
|
| 321 |
+
# Run the agent - PydanticAI handles structured output
|
| 322 |
+
result = await self.agent.run(user_prompt)
|
| 323 |
+
|
| 324 |
+
# result.data is already a JudgeAssessment (typed!)
|
| 325 |
+
assessment = result.data
|
| 326 |
+
|
| 327 |
+
logger.info(
|
| 328 |
+
"Assessment complete",
|
| 329 |
+
sufficient=assessment.sufficient,
|
| 330 |
+
recommendation=assessment.recommendation,
|
| 331 |
+
quality_score=assessment.overall_quality_score,
|
| 332 |
+
candidates_found=len(assessment.candidates),
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
return assessment
|
| 336 |
+
|
| 337 |
+
except Exception as e:
|
| 338 |
+
logger.error("Judge assessment failed", error=str(e))
|
| 339 |
+
raise JudgeError(f"Failed to assess evidence: {e}") from e
|
| 340 |
+
|
| 341 |
+
@property
|
| 342 |
+
def call_count(self) -> int:
|
| 343 |
+
"""Number of LLM calls made (for budget tracking)."""
|
| 344 |
+
return self._call_count
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
# Alternative: Direct OpenAI client (if PydanticAI doesn't work)
|
| 348 |
+
class FallbackJudgeHandler:
|
| 349 |
+
"""Fallback handler using direct OpenAI client with JSON mode."""
|
| 350 |
+
|
| 351 |
+
def __init__(self):
|
| 352 |
+
import openai
|
| 353 |
+
self.client = openai.AsyncOpenAI(api_key=settings.get_api_key())
|
| 354 |
+
|
| 355 |
+
async def assess(
|
| 356 |
+
self,
|
| 357 |
+
question: str,
|
| 358 |
+
evidence: List[Evidence],
|
| 359 |
+
) -> JudgeAssessment:
|
| 360 |
+
"""Assess using direct OpenAI API with JSON mode."""
|
| 361 |
+
from .prompts import build_judge_user_prompt
|
| 362 |
+
|
| 363 |
+
user_prompt = build_judge_user_prompt(question, evidence)
|
| 364 |
+
|
| 365 |
+
response = await self.client.chat.completions.create(
|
| 366 |
+
model=settings.llm_model,
|
| 367 |
+
messages=[
|
| 368 |
+
{"role": "system", "content": JUDGE_SYSTEM_PROMPT},
|
| 369 |
+
{"role": "user", "content": user_prompt},
|
| 370 |
+
],
|
| 371 |
+
response_format={"type": "json_object"},
|
| 372 |
+
temperature=0.3, # Lower temperature for more consistent assessments
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Parse the JSON response
|
| 376 |
+
import json
|
| 377 |
+
content = response.choices[0].message.content
|
| 378 |
+
data = json.loads(content)
|
| 379 |
+
|
| 380 |
+
return JudgeAssessment.model_validate(data)
|
| 381 |
+
```
|
| 382 |
+
|
| 383 |
+
---
|
| 384 |
+
|
| 385 |
+
## 6. TDD Workflow
|
| 386 |
+
|
| 387 |
+
### Test File: `tests/unit/features/judge/test_handler.py`
|
| 388 |
|
| 389 |
```python
|
| 390 |
+
"""Unit tests for the Judge handler."""
|
| 391 |
+
import pytest
|
| 392 |
+
from unittest.mock import AsyncMock, MagicMock, patch
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
class TestJudgeModels:
|
| 396 |
+
"""Tests for Judge data models."""
|
| 397 |
+
|
| 398 |
+
def test_judge_assessment_valid(self):
|
| 399 |
+
"""JudgeAssessment should accept valid data."""
|
| 400 |
+
from src.features.judge.models import JudgeAssessment
|
| 401 |
+
|
| 402 |
+
assessment = JudgeAssessment(
|
| 403 |
+
sufficient=True,
|
| 404 |
+
recommendation="synthesize",
|
| 405 |
+
reasoning="Strong evidence from multiple PubMed sources.",
|
| 406 |
+
overall_quality_score=8,
|
| 407 |
+
coverage_score=7,
|
| 408 |
+
candidates=[],
|
| 409 |
+
next_search_queries=[],
|
| 410 |
+
gaps=[],
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
assert assessment.sufficient is True
|
| 414 |
+
assert assessment.recommendation == "synthesize"
|
| 415 |
+
|
| 416 |
+
def test_judge_assessment_score_bounds(self):
|
| 417 |
+
"""JudgeAssessment should reject invalid scores."""
|
| 418 |
+
from src.features.judge.models import JudgeAssessment
|
| 419 |
+
from pydantic import ValidationError
|
| 420 |
+
|
| 421 |
+
with pytest.raises(ValidationError):
|
| 422 |
+
JudgeAssessment(
|
| 423 |
+
sufficient=True,
|
| 424 |
+
recommendation="synthesize",
|
| 425 |
+
reasoning="Test",
|
| 426 |
+
overall_quality_score=15, # Invalid: > 10
|
| 427 |
+
coverage_score=5,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
def test_drug_candidate_model(self):
|
| 431 |
+
"""DrugCandidate should validate properly."""
|
| 432 |
+
from src.features.judge.models import DrugCandidate
|
| 433 |
+
|
| 434 |
+
candidate = DrugCandidate(
|
| 435 |
+
drug_name="Metformin",
|
| 436 |
+
original_indication="Type 2 Diabetes",
|
| 437 |
+
proposed_indication="Alzheimer's Disease",
|
| 438 |
+
mechanism="Reduces neuroinflammation via AMPK activation",
|
| 439 |
+
evidence_strength="moderate",
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
assert candidate.drug_name == "Metformin"
|
| 443 |
+
assert candidate.evidence_strength == "moderate"
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class TestJudgePrompts:
|
| 447 |
+
"""Tests for prompt formatting."""
|
| 448 |
+
|
| 449 |
+
def test_format_evidence_empty(self):
|
| 450 |
+
"""format_evidence_for_prompt should handle empty list."""
|
| 451 |
+
from src.features.judge.prompts import format_evidence_for_prompt
|
| 452 |
+
|
| 453 |
+
result = format_evidence_for_prompt([])
|
| 454 |
+
assert "NO EVIDENCE" in result
|
| 455 |
+
|
| 456 |
+
def test_format_evidence_with_items(self):
|
| 457 |
+
"""format_evidence_for_prompt should format evidence correctly."""
|
| 458 |
+
from src.features.judge.prompts import format_evidence_for_prompt
|
| 459 |
+
from src.features.search.models import Evidence, Citation
|
| 460 |
+
|
| 461 |
+
evidence = [
|
| 462 |
+
Evidence(
|
| 463 |
+
content="Test content about metformin",
|
| 464 |
+
citation=Citation(
|
| 465 |
+
source="pubmed",
|
| 466 |
+
title="Test Article",
|
| 467 |
+
url="https://pubmed.ncbi.nlm.nih.gov/123/",
|
| 468 |
+
date="2024-01-15",
|
| 469 |
+
),
|
| 470 |
+
)
|
| 471 |
+
]
|
| 472 |
+
|
| 473 |
+
result = format_evidence_for_prompt(evidence)
|
| 474 |
+
|
| 475 |
+
assert "Evidence #1" in result
|
| 476 |
+
assert "PUBMED" in result
|
| 477 |
+
assert "Test Article" in result
|
| 478 |
+
assert "metformin" in result
|
| 479 |
+
|
| 480 |
+
def test_build_judge_user_prompt(self):
|
| 481 |
+
"""build_judge_user_prompt should include question and evidence."""
|
| 482 |
+
from src.features.judge.prompts import build_judge_user_prompt
|
| 483 |
+
from src.features.search.models import Evidence, Citation
|
| 484 |
+
|
| 485 |
+
evidence = [
|
| 486 |
+
Evidence(
|
| 487 |
+
content="Sample content",
|
| 488 |
+
citation=Citation(
|
| 489 |
+
source="pubmed",
|
| 490 |
+
title="Sample",
|
| 491 |
+
url="https://example.com",
|
| 492 |
+
date="2024",
|
| 493 |
+
),
|
| 494 |
+
)
|
| 495 |
+
]
|
| 496 |
+
|
| 497 |
+
result = build_judge_user_prompt(
|
| 498 |
+
"What drugs could treat Alzheimer's?",
|
| 499 |
+
evidence,
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
assert "Alzheimer" in result
|
| 503 |
+
assert "1 pieces" in result
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
class TestJudgeHandler:
|
| 507 |
+
"""Tests for JudgeHandler."""
|
| 508 |
+
|
| 509 |
+
@pytest.mark.asyncio
|
| 510 |
+
async def test_assess_returns_assessment(self, mocker):
|
| 511 |
+
"""JudgeHandler.assess should return JudgeAssessment."""
|
| 512 |
+
from src.features.judge.handlers import JudgeHandler
|
| 513 |
+
from src.features.judge.models import JudgeAssessment
|
| 514 |
+
from src.features.search.models import Evidence, Citation
|
| 515 |
+
|
| 516 |
+
# Create a mock agent
|
| 517 |
+
mock_result = MagicMock()
|
| 518 |
+
mock_result.data = JudgeAssessment(
|
| 519 |
+
sufficient=True,
|
| 520 |
+
recommendation="synthesize",
|
| 521 |
+
reasoning="Good evidence",
|
| 522 |
+
overall_quality_score=8,
|
| 523 |
+
coverage_score=7,
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
mock_agent = AsyncMock()
|
| 527 |
+
mock_agent.run = AsyncMock(return_value=mock_result)
|
| 528 |
+
|
| 529 |
+
# Create handler with mock agent
|
| 530 |
+
handler = JudgeHandler(agent=mock_agent)
|
| 531 |
+
|
| 532 |
+
evidence = [
|
| 533 |
+
Evidence(
|
| 534 |
+
content="Test content",
|
| 535 |
+
citation=Citation(
|
| 536 |
+
source="pubmed",
|
| 537 |
+
title="Test",
|
| 538 |
+
url="https://example.com",
|
| 539 |
+
date="2024",
|
| 540 |
+
),
|
| 541 |
+
)
|
| 542 |
+
]
|
| 543 |
+
|
| 544 |
+
# Act
|
| 545 |
+
result = await handler.assess("Test question", evidence)
|
| 546 |
+
|
| 547 |
+
# Assert
|
| 548 |
+
assert isinstance(result, JudgeAssessment)
|
| 549 |
+
assert result.sufficient is True
|
| 550 |
+
assert result.recommendation == "synthesize"
|
| 551 |
+
mock_agent.run.assert_called_once()
|
| 552 |
+
|
| 553 |
+
@pytest.mark.asyncio
|
| 554 |
+
async def test_assess_increments_call_count(self, mocker):
|
| 555 |
+
"""JudgeHandler should track LLM call count."""
|
| 556 |
+
from src.features.judge.handlers import JudgeHandler
|
| 557 |
+
from src.features.judge.models import JudgeAssessment
|
| 558 |
+
|
| 559 |
+
mock_result = MagicMock()
|
| 560 |
+
mock_result.data = JudgeAssessment(
|
| 561 |
+
sufficient=False,
|
| 562 |
+
recommendation="continue",
|
| 563 |
+
reasoning="Need more evidence",
|
| 564 |
+
overall_quality_score=4,
|
| 565 |
+
coverage_score=3,
|
| 566 |
+
next_search_queries=["metformin mechanism"],
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
mock_agent = AsyncMock()
|
| 570 |
+
mock_agent.run = AsyncMock(return_value=mock_result)
|
| 571 |
+
|
| 572 |
+
handler = JudgeHandler(agent=mock_agent)
|
| 573 |
+
|
| 574 |
+
assert handler.call_count == 0
|
| 575 |
+
|
| 576 |
+
await handler.assess("Q1", [])
|
| 577 |
+
assert handler.call_count == 1
|
| 578 |
+
|
| 579 |
+
await handler.assess("Q2", [])
|
| 580 |
+
assert handler.call_count == 2
|
| 581 |
+
|
| 582 |
+
@pytest.mark.asyncio
|
| 583 |
+
async def test_assess_raises_judge_error_on_failure(self, mocker):
|
| 584 |
+
"""JudgeHandler should raise JudgeError on failure."""
|
| 585 |
+
from src.features.judge.handlers import JudgeHandler
|
| 586 |
+
from src.shared.exceptions import JudgeError
|
| 587 |
+
|
| 588 |
+
mock_agent = AsyncMock()
|
| 589 |
+
mock_agent.run = AsyncMock(side_effect=Exception("LLM API error"))
|
| 590 |
+
|
| 591 |
+
handler = JudgeHandler(agent=mock_agent)
|
| 592 |
+
|
| 593 |
+
with pytest.raises(JudgeError, match="Failed to assess"):
|
| 594 |
+
await handler.assess("Test", [])
|
| 595 |
+
|
| 596 |
+
@pytest.mark.asyncio
|
| 597 |
+
async def test_assess_continues_when_insufficient(self, mocker):
|
| 598 |
+
"""JudgeHandler should return next_search_queries when insufficient."""
|
| 599 |
+
from src.features.judge.handlers import JudgeHandler
|
| 600 |
+
from src.features.judge.models import JudgeAssessment
|
| 601 |
+
|
| 602 |
+
mock_result = MagicMock()
|
| 603 |
+
mock_result.data = JudgeAssessment(
|
| 604 |
+
sufficient=False,
|
| 605 |
+
recommendation="continue",
|
| 606 |
+
reasoning="Not enough peer-reviewed sources",
|
| 607 |
+
overall_quality_score=3,
|
| 608 |
+
coverage_score=2,
|
| 609 |
+
next_search_queries=[
|
| 610 |
+
"metformin alzheimer clinical trial",
|
| 611 |
+
"AMPK neuroprotection mechanism",
|
| 612 |
+
],
|
| 613 |
+
gaps=["No clinical trial data", "Mechanism unclear"],
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
mock_agent = AsyncMock()
|
| 617 |
+
mock_agent.run = AsyncMock(return_value=mock_result)
|
| 618 |
+
|
| 619 |
+
handler = JudgeHandler(agent=mock_agent)
|
| 620 |
+
result = await handler.assess("Test", [])
|
| 621 |
+
|
| 622 |
+
assert result.sufficient is False
|
| 623 |
+
assert result.recommendation == "continue"
|
| 624 |
+
assert len(result.next_search_queries) == 2
|
| 625 |
+
assert len(result.gaps) == 2
|
| 626 |
+
```
|
| 627 |
+
|
| 628 |
+
---
|
| 629 |
+
|
| 630 |
+
## 7. Integration Test (Optional, Real LLM)
|
| 631 |
+
|
| 632 |
+
```python
|
| 633 |
+
# tests/integration/test_judge_live.py
|
| 634 |
+
"""Integration tests that hit real LLM APIs (run manually)."""
|
| 635 |
+
import pytest
|
| 636 |
+
import os
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
@pytest.mark.integration
|
| 640 |
+
@pytest.mark.slow
|
| 641 |
+
@pytest.mark.skipif(
|
| 642 |
+
not os.getenv("OPENAI_API_KEY"),
|
| 643 |
+
reason="OPENAI_API_KEY not set"
|
| 644 |
+
)
|
| 645 |
@pytest.mark.asyncio
|
| 646 |
+
async def test_judge_live_assessment():
|
| 647 |
+
"""Test real LLM assessment (requires API key)."""
|
| 648 |
+
from src.features.judge.handlers import JudgeHandler
|
| 649 |
+
from src.features.search.models import Evidence, Citation
|
| 650 |
+
|
|
|
|
| 651 |
handler = JudgeHandler()
|
| 652 |
+
|
| 653 |
+
evidence = [
|
| 654 |
+
Evidence(
|
| 655 |
+
content="""Metformin, a first-line antidiabetic drug, has shown
|
| 656 |
+
neuroprotective properties in preclinical studies. The drug activates
|
| 657 |
+
AMPK, which may reduce neuroinflammation and improve mitochondrial
|
| 658 |
+
function in neurons.""",
|
| 659 |
+
citation=Citation(
|
| 660 |
+
source="pubmed",
|
| 661 |
+
title="Metformin and Neuroprotection: A Review",
|
| 662 |
+
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
|
| 663 |
+
date="2024-01-15",
|
| 664 |
+
),
|
| 665 |
+
),
|
| 666 |
+
Evidence(
|
| 667 |
+
content="""A retrospective cohort study found that diabetic patients
|
| 668 |
+
taking metformin had a 30% lower risk of developing dementia compared
|
| 669 |
+
to those on other antidiabetic medications.""",
|
| 670 |
+
citation=Citation(
|
| 671 |
+
source="pubmed",
|
| 672 |
+
title="Metformin Use and Dementia Risk",
|
| 673 |
+
url="https://pubmed.ncbi.nlm.nih.gov/67890/",
|
| 674 |
+
date="2023-11-20",
|
| 675 |
+
),
|
| 676 |
+
),
|
| 677 |
+
]
|
| 678 |
+
|
| 679 |
+
result = await handler.assess(
|
| 680 |
+
"What is the potential of metformin for treating Alzheimer's disease?",
|
| 681 |
+
evidence,
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
# Basic sanity checks
|
| 685 |
+
assert result.sufficient in [True, False]
|
| 686 |
+
assert result.recommendation in ["continue", "synthesize"]
|
| 687 |
+
assert 0 <= result.overall_quality_score <= 10
|
| 688 |
+
assert len(result.reasoning) > 0
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
# Run with: uv run pytest tests/integration -m integration
|
| 692 |
```
|
| 693 |
|
| 694 |
+
---
|
| 695 |
+
|
| 696 |
+
## 8. Module Exports (`src/features/judge/__init__.py`)
|
| 697 |
+
|
| 698 |
+
```python
|
| 699 |
+
"""Judge feature - evidence quality assessment."""
|
| 700 |
+
from .models import JudgeAssessment, DrugCandidate, EvidenceQuality
|
| 701 |
+
from .handlers import JudgeHandler
|
| 702 |
+
from .prompts import JUDGE_SYSTEM_PROMPT, build_judge_user_prompt
|
| 703 |
+
|
| 704 |
+
__all__ = [
|
| 705 |
+
"JudgeAssessment",
|
| 706 |
+
"DrugCandidate",
|
| 707 |
+
"EvidenceQuality",
|
| 708 |
+
"JudgeHandler",
|
| 709 |
+
"JUDGE_SYSTEM_PROMPT",
|
| 710 |
+
"build_judge_user_prompt",
|
| 711 |
+
]
|
| 712 |
+
```
|
| 713 |
|
| 714 |
---
|
| 715 |
|
| 716 |
+
## 9. Implementation Checklist
|
| 717 |
+
|
| 718 |
+
- [ ] Create `src/features/judge/models.py` with all Pydantic models
|
| 719 |
+
- [ ] Create `src/features/judge/prompts.py` with prompt templates
|
| 720 |
+
- [ ] Create `src/features/judge/handlers.py` with `JudgeHandler`
|
| 721 |
+
- [ ] Create `src/features/judge/__init__.py` with exports
|
| 722 |
+
- [ ] Write tests in `tests/unit/features/judge/test_handler.py`
|
| 723 |
+
- [ ] Run `uv run pytest tests/unit/features/judge/ -v` β **ALL TESTS MUST PASS**
|
| 724 |
+
- [ ] (Optional) Run integration test with real API key
|
| 725 |
+
- [ ] Commit: `git commit -m "feat: phase 3 judge slice complete"`
|
| 726 |
+
|
| 727 |
+
---
|
| 728 |
+
|
| 729 |
+
## 10. Definition of Done
|
| 730 |
+
|
| 731 |
+
Phase 3 is **COMPLETE** when:
|
| 732 |
+
|
| 733 |
+
1. β
All unit tests pass
|
| 734 |
+
2. β
`JudgeHandler` returns valid `JudgeAssessment` objects
|
| 735 |
+
3. β
Structured output is enforced (no raw JSON strings)
|
| 736 |
+
4. β
Retry logic works (test by mocking transient failures)
|
| 737 |
+
5. β
Can run this in Python REPL (with API key):
|
| 738 |
+
|
| 739 |
+
```python
|
| 740 |
+
import asyncio
|
| 741 |
+
from src.features.judge.handlers import JudgeHandler
|
| 742 |
+
from src.features.search.models import Evidence, Citation
|
| 743 |
+
|
| 744 |
+
async def test():
|
| 745 |
+
handler = JudgeHandler()
|
| 746 |
+
evidence = [
|
| 747 |
+
Evidence(
|
| 748 |
+
content="Metformin shows neuroprotective properties...",
|
| 749 |
+
citation=Citation(
|
| 750 |
+
source="pubmed",
|
| 751 |
+
title="Metformin Review",
|
| 752 |
+
url="https://pubmed.ncbi.nlm.nih.gov/123/",
|
| 753 |
+
date="2024",
|
| 754 |
+
),
|
| 755 |
+
)
|
| 756 |
+
]
|
| 757 |
+
result = await handler.assess("Can metformin treat Alzheimer's?", evidence)
|
| 758 |
+
print(f"Sufficient: {result.sufficient}")
|
| 759 |
+
print(f"Recommendation: {result.recommendation}")
|
| 760 |
+
print(f"Reasoning: {result.reasoning}")
|
| 761 |
+
|
| 762 |
+
asyncio.run(test())
|
| 763 |
+
```
|
| 764 |
|
| 765 |
+
**Proceed to Phase 4 ONLY after all checkboxes are complete.**
|
|
|
|
|
|
|
|
|
|
|
|