"""Gradio UI for DeepCritical agent with MCP server support.""" import os from collections.abc import AsyncGenerator from typing import Any import gradio as gr from pydantic_ai.models.huggingface import HuggingFaceModel from pydantic_ai.providers.huggingface import HuggingFaceProvider from src.agent_factory.judges import HFInferenceJudgeHandler, JudgeHandler, MockJudgeHandler from src.orchestrator_factory import create_orchestrator from src.tools.clinicaltrials import ClinicalTrialsTool from src.tools.europepmc import EuropePMCTool from src.tools.pubmed import PubMedTool from src.tools.search_handler import SearchHandler from src.utils.config import settings from src.utils.models import AgentEvent, OrchestratorConfig def configure_orchestrator( use_mock: bool = False, mode: str = "simple", oauth_token: str | None = None, ) -> tuple[Any, str]: """ Create an orchestrator instance. Args: use_mock: If True, use MockJudgeHandler (no API key needed) mode: Orchestrator mode ("simple" or "advanced") oauth_token: Optional OAuth token from HuggingFace login Returns: Tuple of (Orchestrator instance, backend_name) """ # Create orchestrator config config = OrchestratorConfig( max_iterations=10, max_results_per_tool=10, ) # Create search tools search_handler = SearchHandler( tools=[PubMedTool(), ClinicalTrialsTool(), EuropePMCTool()], timeout=config.search_timeout, ) # Create judge (mock, real, or free tier) judge_handler: JudgeHandler | MockJudgeHandler | HFInferenceJudgeHandler backend_info = "Unknown" # 1. Forced Mock (Unit Testing) if use_mock: judge_handler = MockJudgeHandler() backend_info = "Mock (Testing)" # 2. API Key (OAuth or Env) - HuggingFace only (OAuth provides HF token) # Priority: oauth_token > env vars effective_api_key = oauth_token if effective_api_key or (os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")): model: HuggingFaceModel | None = None if effective_api_key: model_name = settings.huggingface_model or "meta-llama/Llama-3.1-8B-Instruct" hf_provider = HuggingFaceProvider(api_key=effective_api_key) model = HuggingFaceModel(model_name, provider=hf_provider) backend_info = "API (HuggingFace OAuth)" else: backend_info = "API (Env Config)" judge_handler = JudgeHandler(model=model) # 3. Free Tier (HuggingFace Inference) else: judge_handler = HFInferenceJudgeHandler() backend_info = "Free Tier (Llama 3.1 / Mistral)" orchestrator = create_orchestrator( search_handler=search_handler, judge_handler=judge_handler, config=config, mode=mode, # type: ignore ) return orchestrator, backend_info def event_to_chat_message(event: AgentEvent) -> gr.ChatMessage: """ Convert AgentEvent to gr.ChatMessage with metadata for accordion display. Args: event: The AgentEvent to convert Returns: ChatMessage with metadata for collapsible accordion """ # Map event types to accordion titles and determine if pending event_configs: dict[str, dict[str, Any]] = { "started": {"title": "🚀 Starting Research", "status": "done", "icon": "🚀"}, "searching": {"title": "🔍 Searching Literature", "status": "pending", "icon": "🔍"}, "search_complete": {"title": "📚 Search Results", "status": "done", "icon": "📚"}, "judging": {"title": "🧠 Evaluating Evidence", "status": "pending", "icon": "🧠"}, "judge_complete": {"title": "✅ Evidence Assessment", "status": "done", "icon": "✅"}, "looping": {"title": "🔄 Research Iteration", "status": "pending", "icon": "🔄"}, "synthesizing": {"title": "📝 Synthesizing Report", "status": "pending", "icon": "📝"}, "hypothesizing": {"title": "🔬 Generating Hypothesis", "status": "pending", "icon": "🔬"}, "analyzing": {"title": "📊 Statistical Analysis", "status": "pending", "icon": "📊"}, "analysis_complete": {"title": "📈 Analysis Results", "status": "done", "icon": "📈"}, "streaming": {"title": "📡 Processing", "status": "pending", "icon": "📡"}, "complete": {"title": None, "status": "done", "icon": "🎉"}, # Main response, no accordion "error": {"title": "❌ Error", "status": "done", "icon": "❌"}, } config = event_configs.get( event.type, {"title": f"• {event.type}", "status": "done", "icon": "•"} ) # For complete events, return main response without accordion if event.type == "complete": return gr.ChatMessage( role="assistant", content=event.message, ) # Build metadata for accordion metadata: dict[str, Any] = {} if config["title"]: metadata["title"] = config["title"] # Set status (pending shows spinner, done is collapsed) if config["status"] == "pending": metadata["status"] = "pending" # Add duration if available in data if event.data and isinstance(event.data, dict) and "duration" in event.data: metadata["duration"] = event.data["duration"] # Add log info (iteration number, etc.) log_parts: list[str] = [] if event.iteration > 0: log_parts.append(f"Iteration {event.iteration}") if event.data and isinstance(event.data, dict): if "tool" in event.data: log_parts.append(f"Tool: {event.data['tool']}") if "results_count" in event.data: log_parts.append(f"Results: {event.data['results_count']}") if log_parts: metadata["log"] = " | ".join(log_parts) return gr.ChatMessage( role="assistant", content=event.message, metadata=metadata if metadata else None, ) def extract_oauth_info(request: gr.Request | None) -> tuple[str | None, str | None]: """ Extract OAuth token and username from Gradio request. Args: request: Gradio request object containing OAuth information Returns: Tuple of (oauth_token, oauth_username) """ oauth_token: str | None = None oauth_username: str | None = None if request is None: return oauth_token, oauth_username # Try multiple ways to access OAuth token (Gradio API may vary) # Pattern 1: request.oauth_token.token if hasattr(request, "oauth_token") and request.oauth_token is not None: if hasattr(request.oauth_token, "token"): oauth_token = request.oauth_token.token elif isinstance(request.oauth_token, str): oauth_token = request.oauth_token # Pattern 2: request.headers (fallback) elif hasattr(request, "headers"): # OAuth token might be in headers auth_header = request.headers.get("authorization") or request.headers.get("Authorization") if auth_header and auth_header.startswith("Bearer "): oauth_token = auth_header.replace("Bearer ", "") # Access username from request if hasattr(request, "username") and request.username: oauth_username = request.username # Also try accessing via oauth_profile if available elif hasattr(request, "oauth_profile") and request.oauth_profile is not None: if hasattr(request.oauth_profile, "username"): oauth_username = request.oauth_profile.username elif hasattr(request.oauth_profile, "name"): oauth_username = request.oauth_profile.name return oauth_token, oauth_username async def yield_auth_messages( oauth_username: str | None, oauth_token: str | None, has_huggingface: bool, mode: str, ) -> AsyncGenerator[gr.ChatMessage, None]: """ Yield authentication and mode status messages. Args: oauth_username: OAuth username if available oauth_token: OAuth token if available has_huggingface: Whether HuggingFace credentials are available mode: Orchestrator mode Yields: ChatMessage objects with authentication status """ # Show user greeting if logged in via OAuth if oauth_username: yield gr.ChatMessage( role="assistant", content=f"👋 **Welcome, {oauth_username}!** Using your HuggingFace account.\n\n", ) # Advanced mode is not supported without OpenAI (which requires manual setup) # For now, we only support simple mode with HuggingFace if mode == "advanced": yield gr.ChatMessage( role="assistant", content=( "⚠️ **Warning**: Advanced mode requires OpenAI API key configuration. " "Falling back to simple mode.\n\n" ), ) # Inform user about authentication status if oauth_token: yield gr.ChatMessage( role="assistant", content=( "🔐 **Using HuggingFace OAuth token** - " "Authenticated via your HuggingFace account.\n\n" ), ) elif not has_huggingface: # No keys at all - will use FREE HuggingFace Inference (public models) yield gr.ChatMessage( role="assistant", content=( "🤗 **Free Tier**: Using HuggingFace Inference (Llama 3.1 / Mistral) for AI analysis.\n" "For premium models or higher rate limits, sign in with HuggingFace above.\n\n" ), ) async def handle_orchestrator_events( orchestrator: Any, message: str, ) -> AsyncGenerator[gr.ChatMessage, None]: """ Handle orchestrator events and yield ChatMessages. Args: orchestrator: The orchestrator instance message: The research question Yields: ChatMessage objects from orchestrator events """ # Track pending accordions for real-time updates pending_accordions: dict[str, str] = {} # title -> accumulated content async for event in orchestrator.run(message): # Convert event to ChatMessage with metadata chat_msg = event_to_chat_message(event) # Handle complete events (main response) if event.type == "complete": # Close any pending accordions first if pending_accordions: for title, content in pending_accordions.items(): yield gr.ChatMessage( role="assistant", content=content.strip(), metadata={"title": title, "status": "done"}, ) pending_accordions.clear() # Yield final response (no accordion for main response) yield chat_msg continue # Handle events with metadata (accordions) if chat_msg.metadata: title = chat_msg.metadata.get("title") status = chat_msg.metadata.get("status") if title: # For pending operations, accumulate content and show spinner if status == "pending": if title not in pending_accordions: pending_accordions[title] = "" pending_accordions[title] += chat_msg.content + "\n" # Yield updated accordion with accumulated content yield gr.ChatMessage( role="assistant", content=pending_accordions[title].strip(), metadata=chat_msg.metadata, ) elif title in pending_accordions: # Combine pending content with final content final_content = pending_accordions[title] + chat_msg.content del pending_accordions[title] yield gr.ChatMessage( role="assistant", content=final_content.strip(), metadata={"title": title, "status": "done"}, ) else: # New done accordion (no pending state) yield chat_msg else: # No title, yield as-is yield chat_msg else: # No metadata, yield as plain message yield chat_msg async def research_agent( message: str, history: list[dict[str, Any]], mode: str = "simple", request: gr.Request | None = None, ) -> AsyncGenerator[gr.ChatMessage | list[gr.ChatMessage], None]: """ Gradio chat function that runs the research agent. Args: message: User's research question history: Chat history (Gradio format) mode: Orchestrator mode ("simple" or "advanced") request: Gradio request object containing OAuth information Yields: ChatMessage objects with metadata for accordion display """ if not message.strip(): yield gr.ChatMessage( role="assistant", content="Please enter a research question.", ) return # Extract OAuth token from request if available oauth_token, oauth_username = extract_oauth_info(request) # Check available keys has_huggingface = bool(os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY") or oauth_token) # Adjust mode if needed effective_mode = mode if mode == "advanced": effective_mode = "simple" # Yield authentication and mode status messages async for msg in yield_auth_messages(oauth_username, oauth_token, has_huggingface, mode): yield msg # Run the agent and stream events try: # use_mock=False - let configure_orchestrator decide based on available keys # It will use: OAuth token > Env vars > HF Inference (free tier) orchestrator, backend_name = configure_orchestrator( use_mock=False, # Never use mock in production - HF Inference is the free fallback mode=effective_mode, oauth_token=oauth_token, ) yield gr.ChatMessage( role="assistant", content=f"🧠 **Backend**: {backend_name}\n\n", ) # Handle orchestrator events async for msg in handle_orchestrator_events(orchestrator, message): yield msg except Exception as e: yield gr.ChatMessage( role="assistant", content=f"❌ **Error**: {e!s}", metadata={"title": "❌ Error", "status": "done"}, ) def create_demo() -> gr.Blocks: """ Create the Gradio demo interface with MCP support and OAuth login. Returns: Configured Gradio Blocks interface with MCP server and OAuth enabled """ with gr.Blocks(title="🧬 DeepCritical") as demo: # Add login button at the top with gr.Row(): gr.LoginButton() # Chat interface gr.ChatInterface( fn=research_agent, title="🧬 DeepCritical", description=( "*AI-Powered Drug Repurposing Agent — searches PubMed, " "ClinicalTrials.gov & Europe PMC*\n\n" "---\n" "*Research tool only — not for medical advice.* \n" "**MCP Server Active**: Connect Claude Desktop to `/gradio_api/mcp/`\n\n" "**Sign in with HuggingFace** above to use your account's API token automatically." ), examples=[ ["What drugs could be repurposed for Alzheimer's disease?", "simple"], ["Is metformin effective for treating cancer?", "simple"], ["What medications show promise for Long COVID treatment?", "simple"], ], additional_inputs_accordion=gr.Accordion(label="⚙️ Settings", open=False), additional_inputs=[ gr.Radio( choices=["simple", "advanced"], value="simple", label="Orchestrator Mode", info=( "Simple: Linear (Free Tier Friendly) | Advanced: Multi-Agent (Requires OpenAI - not available without manual config)" ), ), ], ) return demo def main() -> None: """Run the Gradio app with MCP server enabled.""" demo = create_demo() demo.launch( server_name="0.0.0.0", server_port=7860, share=False, mcp_server=True, ssr_mode=False, # Fix for intermittent loading/hydration issues in HF Spaces ) if __name__ == "__main__": main()