File size: 12,256 Bytes
93bede5
3b6e4a1
93bede5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6e4a1
93bede5
3b6e4a1
93bede5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6e4a1
93bede5
 
 
 
3b6e4a1
93bede5
 
 
 
 
 
 
 
 
 
3b6e4a1
93bede5
 
 
 
 
 
 
3b6e4a1
 
 
691b503
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import gradio as gr
import requests
import json
import asyncio
from typing import List, Dict, Any, Generator
import logging
from duckduckgo_search import DDGS
from bs4 import BeautifulSoup
import re

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration from environment variables with defaults
DEFAULT_IP = {public_ip}
DEFAULT_PORT = {port}
DEFAULT_KEY = {api_key}
DEFAULT_MODEL = {model}

llm_ip = os.environ.get('LLM_IP', DEFAULT_IP)
llm_port = os.environ.get('LLM_PORT', DEFAULT_PORT)
llm_key = os.environ.get('LLM_KEY', DEFAULT_KEY)
llm_model = os.environ.get('LLM_MODEL', DEFAULT_MODEL)

class WebTools:
    def __init__(self):
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        })
        self.ddgs = DDGS()

    def search_web(self, query: str, max_results: int = 5) -> str:
        """Search the web using DuckDuckGo"""
        try:
            results = self.ddgs.text(query, max_results=max_results)
            if not results:
                return f"No search results found for: {query}"

            formatted_results = f"Search results for '{query}':\n\n"
            for i, result in enumerate(results, 1):
                title = result.get('title', 'No title')
                body = result.get('body', 'No description')
                href = result.get('href', 'No URL')
                formatted_results += f"{i}. **{title}**\n{body}\nURL: {href}\n\n"

            return formatted_results
        except Exception as e:
            logger.error(f"Search error: {e}")
            return f"Search error: {str(e)}"

    def visit_website(self, url: str) -> str:
        """Visit a website and extract its text content"""
        try:
            if not url.startswith(('http://', 'https://')):
                url = 'https://' + url

            response = self.session.get(url, timeout=10)
            response.raise_for_status()

            soup = BeautifulSoup(response.content, 'html.parser')

            # Remove script and style elements
            for script in soup(["script", "style", "nav", "footer", "header"]):
                script.decompose()

            # Get text content
            text = soup.get_text()

            # Clean up text
            lines = (line.strip() for line in text.splitlines())
            chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
            text = ' '.join(chunk for chunk in chunks if chunk)

            # Limit text length
            if len(text) > 3000:
                text = text[:3000] + "... (content truncated)"

            return f"Content from {url}:\n\n{text}"
        except Exception as e:
            logger.error(f"Website visit error: {e}")
            return f"Error visiting {url}: {str(e)}"

class LLMClient:
    def __init__(self, ip: str, port: str, api_key: str, model: str):
        self.ip = ip
        self.port = port
        self.api_key = api_key
        self.model = model
        self.base_url = f"http://{ip}:{port}/v1/chat/completions"

    def call_llm(self, messages: List[Dict], max_tokens: int = 512, stream: bool = False):
        """Call the LLM API"""
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}"
        }
        data = {
            "model": self.model,
            "messages": messages,
            "max_tokens": max_tokens,
            "stream": stream
        }

        try:
            response = requests.post(self.base_url, headers=headers, json=data,
                                   stream=stream, timeout=30)
            response.raise_for_status()

            if stream:
                return response
            else:
                result = response.json()
                return result["choices"][0]["message"]["content"]
        except Exception as e:
            logger.error(f"LLM API call failed: {e}")
            return f"Error: {str(e)}"

class ReactAgent:
    def __init__(self, llm_client: LLMClient):
        self.llm_client = llm_client
        self.web_tools = WebTools()
        self.system_prompt = """You are a helpful AI assistant with access to web browsing capabilities. You can:
1. Search the web using DuckDuckGo
2. Visit and analyze websites
3. Answer questions based on current information

When a user asks something that requires current information or web searching, use the available tools.

Available tools:
- search_web(query): Search DuckDuckGo for information
- visit_website(url): Visit and extract content from a website

Format your tool calls as: TOOL[tool_name: parameters]
For example: TOOL[search_web: latest news about AI] or TOOL[visit_website: https://example.com]

Always explain what you're doing and provide helpful responses based on the information you gather."""

    def parse_tool_calls(self, text: str) -> List[Dict]:
        """Parse tool calls from agent response"""
        tool_pattern = r'TOOL\[(\w+):\s*([^\]]+)\]'
        matches = re.findall(tool_pattern, text)

        tools = []
        for tool_name, params in matches:
            tools.append({
                'name': tool_name,
                'params': params.strip()
            })
        return tools

    def execute_tool(self, tool_name: str, params: str) -> str:
        """Execute a tool and return results"""
        try:
            if tool_name == 'search_web':
                return self.web_tools.search_web(params)
            elif tool_name == 'visit_website':
                return self.web_tools.visit_website(params)
            else:
                return f"Unknown tool: {tool_name}"
        except Exception as e:
            return f"Tool execution error: {str(e)}"

    def process_message(self, message: str, history: List[List[str]], max_tokens: int) -> Generator[str, None, None]:
        """Process user message with ReAct pattern"""
        try:
            # Format chat history
            messages = [{"role": "system", "content": self.system_prompt}]

            for user_msg, assistant_msg in history:
                messages.append({"role": "user", "content": user_msg})
                if assistant_msg:
                    messages.append({"role": "assistant", "content": assistant_msg})

            messages.append({"role": "user", "content": message})

            # Initial LLM call
            response = self.llm_client.call_llm(messages, max_tokens, stream=True)

            current_response = ""
            tool_calls_made = False

            # Stream initial response
            for line in response.iter_lines():
                if line:
                    line = line.decode('utf-8')
                    if line.startswith('data: '):
                        data_str = line[6:]
                        if data_str.strip() == '[DONE]':
                            break
                        try:
                            data = json.loads(data_str)
                            if 'choices' in data and len(data['choices']) > 0:
                                delta = data['choices'][0].get('delta', {})
                                content = delta.get('content', '')
                                if content:
                                    current_response += content
                                    yield current_response
                        except json.JSONDecodeError:
                            continue

            # Check for tool calls
            tool_calls = self.parse_tool_calls(current_response)

            if tool_calls:
                tool_calls_made = True
                for tool_call in tool_calls:
                    yield current_response + f"\n\nπŸ” Executing {tool_call['name']}..."

                    tool_result = self.execute_tool(tool_call['name'], tool_call['params'])

                    # Add tool result to conversation
                    messages.append({"role": "assistant", "content": current_response})
                    messages.append({"role": "user", "content": f"Tool result:\n{tool_result}\n\nPlease provide a helpful response based on this information."})

                    # Get final response
                    final_response = self.llm_client.call_llm(messages, max_tokens, stream=True)

                    final_text = current_response + f"\n\n**Tool Results:**\n{tool_result}\n\n**Response:**\n"

                    for line in final_response.iter_lines():
                        if line:
                            line = line.decode('utf-8')
                            if line.startswith('data: '):
                                data_str = line[6:]
                                if data_str.strip() == '[DONE]':
                                    break
                                try:
                                    data = json.loads(data_str)
                                    if 'choices' in data and len(data['choices']) > 0:
                                        delta = data['choices'][0].get('delta', {})
                                        content = delta.get('content', '')
                                        if content:
                                            final_text += content
                                            yield final_text
                                except json.JSONDecodeError:
                                    continue
                    break  # Only handle first tool call for now

        except Exception as e:
            error_msg = f"Agent error: {str(e)}"
            logger.error(error_msg)
            yield error_msg

# Initialize components
llm_client = LLMClient(llm_ip, llm_port, llm_key, llm_model)
agent = ReactAgent(llm_client)

def generate_response(message: str, history: List[List[str]], system_prompt: str,
                     max_tokens: int, ip: str, port: str, api_key: str, model: str):
    """Generate streaming response using the agent"""
    global llm_client, agent

    # Update LLM client if parameters changed
    if (ip != llm_client.ip or port != llm_client.port or
        api_key != llm_client.api_key or model != llm_client.model):
        llm_client = LLMClient(ip, port, api_key, model)
        agent = ReactAgent(llm_client)

    # Update system prompt if provided
    if system_prompt.strip():
        agent.system_prompt = system_prompt

    # Generate response
    for response in agent.process_message(message, history, max_tokens):
        yield response

# Create Gradio interface
chatbot = gr.ChatInterface(
    generate_response,
    chatbot=gr.Chatbot(
        avatar_images=[
            None,
            "https://cdn-avatars.huggingface.co/v1/production/uploads/64e6d37e02dee9bcb9d9fa18/o_HhUnXb_PgyYlqJ6gfEO.png"
        ],
        height="64vh"
    ),
    additional_inputs=[
        gr.Textbox(
            "You are a helpful AI assistant with web browsing capabilities. You can search the web and visit websites to provide current information. Use TOOL[search_web: query] to search or TOOL[visit_website: url] to browse websites.",
            label="System Prompt",
            lines=3
        ),
        gr.Slider(50, 2048, label="Max Tokens", value=512,
                 info="Maximum number of tokens in the response"),
        gr.Textbox(llm_ip, label="LLM IP Address",
                  info="IP address of the LLM server"),
        gr.Textbox(llm_port, label="LLM Port",
                  info="Port of the LLM server"),
        gr.Textbox(llm_key, label="API Key", type="password",
                  info="API key for the LLM server"),
        gr.Textbox(llm_model, label="Model Name",
                  info="Name of the model to use"),
    ],
    title="πŸ€– AI Agent with Web Browsing",
    description="Chat with an AI agent that can search the web and browse websites using DuckDuckGo. Use natural language to ask for current information!",
    theme="finlaymacklon/smooth_slate",
    submit_btn="Send",
    retry_btn="πŸ”„ Regenerate Response",
    undo_btn="↩ Delete Previous",
    clear_btn="πŸ—‘οΈ Clear Chat"
)

if __name__ == "__main__":
    chatbot.queue().launch()