ai-lawyer / rag_pipeline.py
Dhruv Pawar
Initial commit of AI-Lawyer project
68aa9b8
"""
rag_pipeline.py - Enhanced RAG pipeline with state-of-the-art features for LegalMind AI
"""
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate
from langchain.schema import SystemMessage, HumanMessage
from utils import clean_response
import os
from typing import List, Tuple, Dict, Any, Optional
import time
import json
# Import project configuration
from config import GROQ_API_KEY, MAX_RETRIES, LLM_MODELS, LOGS_DIR
# Enhanced LLM setup with multiple model options
def get_llm(model: str = "deepseek-r1-distill-llama-70b", temperature: float = 0.2):
"""
Get LLM with proper error handling, multiple model options, and temperature control
Args:
model: The model to use
temperature: The temperature setting (0.0 to 1.0)
Returns:
Configured LLM or None if error
"""
groq_api_key = GROQ_API_KEY
if not groq_api_key:
print("Error: GROQ_API_KEY not found in environment variables. Please add it to your .env file.")
return None
# Validate model name
valid_models = list(LLM_MODELS.keys())
if model not in valid_models:
print(f"Warning: Model {model} not in known list. Defaulting to deepseek-r1-distill-llama-70b.")
model = "deepseek-r1-distill-llama-70b"
# Clamp temperature
temperature = max(0.0, min(1.0, temperature))
try:
return ChatGroq(
model=model,
api_key=groq_api_key,
temperature=temperature
)
except Exception as e:
print(f"Error initializing Groq LLM: {e}")
return None
# Enhanced legal prompt template with improved context handling and source attribution
LEGAL_PROMPT_TEMPLATE = """
You are LegalMind AI, an advanced AI Legal Assistant specializing in Indian law and legal analysis.
Use the legal information provided in the context to answer the user's question about Indian law.
Focus only on the legal aspects described in the provided context. Your primary objective is to provide
accurate, well-structured legal analysis based on the information you have been given.
Important guidelines:
1. Stay focused on the legal information in the provided context - do not invent or assume legal principles not present.
2. For each important point or claim you make, refer to the source document by indicating the document number.
3. Structure your response clearly with appropriate headers and bullet points for complex answers.
4. Use legal terminology correctly and precisely.
5. If the question has multiple parts, address each part systematically.
6. If you don't know the answer, clearly state that you don't have enough information.
7. Always end with a disclaimer that this is not legal advice.
Context information is below:
---------------------
{context}
---------------------
Given the context information and not prior knowledge, answer the question:
Question: {question}
Format your answer professionally and ensure you cite the document numbers for key information. Remember, you're a legal assistant helping with research and analysis.
"""
# Advanced retrieval function with hybrid search
def retrieve_docs(vector_db, query, k=5, retrieval_method="hybrid"):
"""
Retrieve relevant documents from vector database with improved retrieval options
Args:
vector_db: The vector database
query: User query
k: Number of documents to retrieve
retrieval_method: "similarity", "mmr", or "hybrid"
Returns:
List of retrieved documents
"""
if vector_db is None:
return []
try:
if retrieval_method == "similarity":
# Standard similarity search
return vector_db.similarity_search(query, k=k)
elif retrieval_method == "mmr":
# Maximum Marginal Relevance - better diversity
return vector_db.max_marginal_relevance_search(query, k=k, fetch_k=k*2)
elif retrieval_method == "hybrid":
# Hybrid approach: combine similarity and MMR
similarity_docs = vector_db.similarity_search(query, k=int(k/2))
mmr_docs = vector_db.max_marginal_relevance_search(query, k=k-len(similarity_docs))
# Combine and deduplicate
all_docs = similarity_docs + mmr_docs
unique_docs = []
content_set = set()
for doc in all_docs:
content_hash = hash(doc.page_content)
if content_hash not in content_set:
content_set.add(content_hash)
unique_docs.append(doc)
# Break if we have enough documents
if len(unique_docs) >= k:
break
return unique_docs
else:
print(f"Unknown retrieval method: {retrieval_method}. Using similarity search.")
return vector_db.similarity_search(query, k=k)
except Exception as e:
print(f"Error retrieving documents: {e}")
return []
def get_context(documents):
"""
Extract content from documents to create context with document identifiers
Args:
documents: List of documents
Returns:
Formatted context string
"""
if not documents:
return "No relevant information found."
context_parts = []
for i, doc in enumerate(documents):
# Add document identifier and metadata if available
doc_id = f"Document {i+1}"
source = f"(Source: {doc.metadata.get('source', 'Unknown')})" if hasattr(doc, 'metadata') and doc.metadata.get('source') else ""
page = f", Page {doc.metadata.get('page', 'Unknown')}" if hasattr(doc, 'metadata') and doc.metadata.get('page') else ""
context_parts.append(f"{doc_id} {source}{page}:\n{doc.page_content}\n")
return "\n".join(context_parts)
def answer_query(
vector_db,
query,
max_retries=2,
retrieval_method="hybrid",
show_sources=False,
k=5,
temperature=0.2,
model="deepseek-r1-distill-llama-70b"
) -> Tuple[str, Optional[List[str]]]:
"""
Generate answer using enhanced RAG pipeline with improved features
Args:
vector_db: Vector database
query: User query
max_retries: Number of retries on failure
retrieval_method: Method for document retrieval
show_sources: Whether to return source information
k: Number of documents to retrieve
temperature: LLM temperature
model: LLM model to use
Returns:
Tuple of (response text, source documents if requested)
"""
if not query or not vector_db:
return "Either your question or the document is missing. Please check and try again.", None
# Initialize LLM if needed
llm = get_llm(model=model, temperature=temperature)
if not llm:
return "Unable to initialize the language model. Please check your API key and try again.", None
# Track performance metrics
start_time = time.time()
# Try answering with retries
for attempt in range(max_retries):
try:
# Retrieve relevant documents with timing
retrieval_start = time.time()
documents = retrieve_docs(vector_db, query, k=k, retrieval_method=retrieval_method)
retrieval_time = time.time() - retrieval_start
if not documents:
return "I couldn't find relevant information in the document to answer your question. Please try a different question or upload a document with the relevant information.", None
# Get context from documents
context_start = time.time()
context = get_context(documents)
context_time = time.time() - context_start
# Create prompt and chain
llm_start = time.time()
prompt = ChatPromptTemplate.from_template(LEGAL_PROMPT_TEMPLATE)
chain = prompt | llm
# Get and clean response
response = chain.invoke({"question": query, "context": context})
llm_time = time.time() - llm_start
total_time = time.time() - start_time
# Log performance metrics
performance_metrics = {
"retrieval_time": round(retrieval_time, 2),
"context_time": round(context_time, 2),
"llm_time": round(llm_time, 2),
"total_time": round(total_time, 2)
}
# Log to console
print(f"Performance: Retrieval: {retrieval_time:.2f}s, Context: {context_time:.2f}s, LLM: {llm_time:.2f}s, Total: {total_time:.2f}s")
# Prepare source information if requested
sources = None
if show_sources:
sources = []
for i, doc in enumerate(documents):
source_info = f"Document {i+1}"
if hasattr(doc, 'metadata'):
if 'source' in doc.metadata:
source_info += f" | Source: {doc.metadata['source']}"
if 'page' in doc.metadata:
source_info += f" | Page: {doc.metadata['page']}"
# Add a snippet of content
content_preview = doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content
source_info += f"\nExcerpt: {content_preview}"
sources.append(source_info)
# Log the query for improvement
save_query_log(query, clean_response(response), sources or [], performance_metrics)
# Return the response and sources if requested
return clean_response(response), sources
except Exception as e:
if attempt < max_retries - 1:
print(f"Attempt {attempt+1} failed: {e}. Retrying...")
continue
else:
return f"I encountered an error while processing your question: {str(e)}. Please try again with a simpler query.", None
def save_query_log(query, response, sources, performance_metrics):
"""
Save query logs for analysis and improvement
Args:
query: User query
response: Generated response
sources: Source documents used
performance_metrics: Performance metrics
"""
log_entry = {
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"query": query,
"response_length": len(response),
"num_sources": len(sources) if sources else 0,
"performance_metrics": performance_metrics
}
log_file = os.path.join(LOGS_DIR, f"query_log_{time.strftime('%Y%m%d')}.jsonl")
with open(log_file, "a") as f:
f.write(json.dumps(log_entry) + "\n")
def get_document_summary(vector_db, max_tokens=500):
"""
Generate a summary of the document for quick overview
Args:
vector_db: Vector database containing the document
max_tokens: Maximum tokens for summary
Returns:
Document summary
"""
if not vector_db:
return "No document loaded."
# Get a sample of documents from the database
try:
# Get documents that represent the key sections
docs = vector_db.similarity_search("summarize the main topics and key points of this document", k=5)
if not docs:
return "Unable to generate summary from this document."
# Create a summary prompt
summary_prompt = """
You are a legal document summarization expert. Based on the following excerpts from a legal document,
provide a concise summary (maximum 3 paragraphs) of what the document appears to be about, its key topics,
and main legal points. Focus on the factual content only:
{context}
Brief Summary:
"""
# Initialize LLM
llm = get_llm(temperature=0.1) # Low temperature for factual summary
if not llm:
return "Unable to initialize the language model for summary generation."
# Extract context
context = get_context(docs)
# Generate summary
prompt = ChatPromptTemplate.from_template(summary_prompt)
chain = prompt | llm
response = chain.invoke({"context": context})
return clean_response(response)
except Exception as e:
print(f"Error generating document summary: {e}")
return f"Unable to generate summary: {str(e)}"