Spaces:
Configuration error
Configuration error
Upload 5 files
Browse files- README.md +13 -16
- app.py +376 -0
- packages.txt +1 -0
- requirements.txt +5 -3
- runtime.txt +1 -0
README.md
CHANGED
|
@@ -1,19 +1,16 @@
|
|
| 1 |
-
|
| 2 |
-
title: Process Mining
|
| 3 |
-
emoji: 🚀
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: red
|
| 6 |
-
sdk: docker
|
| 7 |
-
app_port: 8501
|
| 8 |
-
tags:
|
| 9 |
-
- streamlit
|
| 10 |
-
pinned: false
|
| 11 |
-
short_description: Process_Inteligence
|
| 12 |
-
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
# Mini Process Miner (Streamlit + PM4Py)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
A lightweight, **process mining** app built with **Streamlit**, **PM4Py**, and **pandas**. 100% vibe coded with ChatGPT.
|
| 4 |
+
Upload an event log (CSV) and explore:
|
| 5 |
+
- Process map (clean, frequency, performance)
|
| 6 |
+
- DFG with counts & durations
|
| 7 |
+
- Filters for activities, optional columns (`column1/2/3`)
|
| 8 |
+
- Case-level & event-level exclusions
|
| 9 |
+
- Sliders for activity/connection frequency
|
| 10 |
|
| 11 |
+
## ✨ Quick start
|
| 12 |
|
| 13 |
+
### 1) Local (pip)
|
| 14 |
+
```bash
|
| 15 |
+
pip install -r requirements.txt
|
| 16 |
+
streamlit run app.py
|
app.py
ADDED
|
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import shutil
|
| 3 |
+
import importlib
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
# ----------------------------
|
| 7 |
+
# Config
|
| 8 |
+
# ----------------------------
|
| 9 |
+
st.set_page_config(page_title="Mini Process Miner", layout="wide")
|
| 10 |
+
DEBUG = True # set to False to hide the env checks from users
|
| 11 |
+
|
| 12 |
+
# Optional: quick environment/dependency check
|
| 13 |
+
if DEBUG:
|
| 14 |
+
st.write("Python OK. Checking deps…")
|
| 15 |
+
st.write("pm4py import:", bool(importlib.util.find_spec("pm4py")))
|
| 16 |
+
st.write("graphviz (pip) import:", bool(importlib.util.find_spec("graphviz")))
|
| 17 |
+
st.write("dot in PATH:", shutil.which("dot"))
|
| 18 |
+
|
| 19 |
+
# ----------------------------
|
| 20 |
+
# Page setup
|
| 21 |
+
# ----------------------------
|
| 22 |
+
st.title("Mini Process Miner (vibe-coded)")
|
| 23 |
+
|
| 24 |
+
# Uploader with clear instructions
|
| 25 |
+
uploaded = st.file_uploader(
|
| 26 |
+
"Upload your event log (CSV)",
|
| 27 |
+
type=["csv"],
|
| 28 |
+
help="Use EXACT headers (lowercase): required → case_id, activity, timestamp; optional → column1, column2, column3."
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
st.caption(
|
| 32 |
+
"**Required columns:** case_id, activity, timestamp • "
|
| 33 |
+
"**Optional:** column1, column2, column3 (e.g., resource, team, location) • "
|
| 34 |
+
"Need a sample dataset? [Download a test CSV here](https://drive.google.com/drive/folders/1q0iqn5_FFz4EttLDl0zR09RQ3z4JsdDR) • "
|
| 35 |
+
"**Disclaimer:** This demo tool offers no guarantees regarding data security or accuracy; use at your own risk. • "
|
| 36 |
+
"Created by Dennis Arrindell, powered by [PM4Py](https://pm4py.fit.fraunhofer.de/), and 100% vibe-coded with ChatGPT."
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# ----------------------------
|
| 41 |
+
# Helpers
|
| 42 |
+
# ----------------------------
|
| 43 |
+
def ensure_parsed(df: pd.DataFrame) -> pd.DataFrame:
|
| 44 |
+
"""Normalize columns and parse timestamp."""
|
| 45 |
+
df = df.copy()
|
| 46 |
+
df.columns = [c.strip().lower() for c in df.columns]
|
| 47 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"], errors="coerce")
|
| 48 |
+
df = df.dropna(subset=["timestamp"])
|
| 49 |
+
return df
|
| 50 |
+
|
| 51 |
+
def compute_ordered(df: pd.DataFrame) -> pd.DataFrame:
|
| 52 |
+
return df.sort_values(["case_id", "timestamp"])
|
| 53 |
+
|
| 54 |
+
def apply_case_level_exclusion(df: pd.DataFrame, activities_to_drop: list) -> pd.DataFrame:
|
| 55 |
+
"""Remove entire cases that contain any of the selected activities."""
|
| 56 |
+
if not activities_to_drop:
|
| 57 |
+
return df
|
| 58 |
+
cases_with_forbidden = df.loc[df["activity"].isin(activities_to_drop), "case_id"].unique()
|
| 59 |
+
return df.loc[~df["case_id"].isin(cases_with_forbidden)].copy()
|
| 60 |
+
|
| 61 |
+
def apply_event_level_exclusion(df: pd.DataFrame, activities_to_remove: list) -> pd.DataFrame:
|
| 62 |
+
"""Remove only those activity events, keep the rest of the case."""
|
| 63 |
+
if not activities_to_remove:
|
| 64 |
+
return df
|
| 65 |
+
out = df.loc[~df["activity"].isin(activities_to_remove)].copy()
|
| 66 |
+
valid_cases = out["case_id"].value_counts()
|
| 67 |
+
keep_cases = valid_cases[valid_cases > 0].index
|
| 68 |
+
return out.loc[out["case_id"].isin(keep_cases)].copy()
|
| 69 |
+
|
| 70 |
+
def apply_activity_threshold(df: pd.DataFrame, min_freq: int) -> pd.DataFrame:
|
| 71 |
+
"""Drop events whose activity total frequency < min_freq."""
|
| 72 |
+
if min_freq <= 1 or df.empty:
|
| 73 |
+
return df
|
| 74 |
+
counts = df["activity"].value_counts()
|
| 75 |
+
keep_acts = counts[counts >= min_freq].index
|
| 76 |
+
return df.loc[df["activity"].isin(keep_acts)].copy()
|
| 77 |
+
|
| 78 |
+
def build_edges(ordered_df: pd.DataFrame) -> pd.DataFrame:
|
| 79 |
+
"""Build directly-follows edges with counts."""
|
| 80 |
+
if ordered_df.empty:
|
| 81 |
+
return pd.DataFrame(columns=["edge", "count"])
|
| 82 |
+
tmp = ordered_df.copy()
|
| 83 |
+
tmp["next_activity"] = tmp.groupby("case_id")["activity"].shift(-1)
|
| 84 |
+
edges = tmp.dropna(subset=["next_activity"])[["activity", "next_activity"]]
|
| 85 |
+
if edges.empty:
|
| 86 |
+
return pd.DataFrame(columns=["edge", "count"])
|
| 87 |
+
edges["edge"] = edges["activity"] + " → " + edges["next_activity"]
|
| 88 |
+
edge_counts = edges["edge"].value_counts().rename_axis("edge").reset_index(name="count")
|
| 89 |
+
return edge_counts
|
| 90 |
+
|
| 91 |
+
def apply_optional_column_includes(df: pd.DataFrame, colname: str, selected: list) -> pd.DataFrame:
|
| 92 |
+
"""If selections provided for a column, keep only rows where column ∈ selected."""
|
| 93 |
+
if colname in df.columns and selected:
|
| 94 |
+
return df[df[colname].astype(str).isin([str(x) for x in selected])]
|
| 95 |
+
return df
|
| 96 |
+
|
| 97 |
+
# ----------------------------
|
| 98 |
+
# Main
|
| 99 |
+
# ----------------------------
|
| 100 |
+
if uploaded:
|
| 101 |
+
raw_df = pd.read_csv(uploaded)
|
| 102 |
+
|
| 103 |
+
# Validate columns early (we normalize to lowercase)
|
| 104 |
+
required = {"case_id", "activity", "timestamp"}
|
| 105 |
+
if not required.issubset(set([c.strip().lower() for c in raw_df.columns])):
|
| 106 |
+
st.error("CSV must include required columns: case_id, activity, timestamp. Optional: column1, column2, column3.")
|
| 107 |
+
st.stop()
|
| 108 |
+
|
| 109 |
+
df = ensure_parsed(raw_df)
|
| 110 |
+
|
| 111 |
+
# ----------------------------
|
| 112 |
+
# Sidebar filters (case/event + optional column1/2/3) FIRST
|
| 113 |
+
# ----------------------------
|
| 114 |
+
st.sidebar.header("Filters")
|
| 115 |
+
|
| 116 |
+
# Optional extra columns (exact names after normalization): column1, column2, column3
|
| 117 |
+
extra_cols_present = [c for c in ["column1", "column2", "column3"] if c in df.columns]
|
| 118 |
+
|
| 119 |
+
# Case-level exclusion
|
| 120 |
+
all_activities = sorted(df["activity"].astype(str).unique().tolist())
|
| 121 |
+
case_exclude = st.sidebar.multiselect(
|
| 122 |
+
"Remove all CASES containing these activities",
|
| 123 |
+
options=all_activities,
|
| 124 |
+
help="If a case contains one of these activities, the entire case is removed."
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Event-level exclusion
|
| 128 |
+
event_exclude = st.sidebar.multiselect(
|
| 129 |
+
"Remove only EVENTS with these activities (keep cases)",
|
| 130 |
+
options=all_activities,
|
| 131 |
+
help="Events with these activities are dropped, but the case remains if other events exist."
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Optional include filters for extra columns
|
| 135 |
+
if extra_cols_present:
|
| 136 |
+
st.sidebar.markdown("---")
|
| 137 |
+
st.sidebar.subheader("Optional column filters")
|
| 138 |
+
selections = {}
|
| 139 |
+
for col in extra_cols_present:
|
| 140 |
+
options = sorted(df[col].dropna().astype(str).unique().tolist())
|
| 141 |
+
selections[col] = st.sidebar.multiselect(
|
| 142 |
+
f"Include only {col} values",
|
| 143 |
+
options=options,
|
| 144 |
+
help=f"Leave empty to include all {col} values."
|
| 145 |
+
)
|
| 146 |
+
else:
|
| 147 |
+
selections = {}
|
| 148 |
+
|
| 149 |
+
# Apply case/event filters
|
| 150 |
+
df_filt = apply_case_level_exclusion(df, case_exclude)
|
| 151 |
+
df_filt = apply_event_level_exclusion(df_filt, event_exclude)
|
| 152 |
+
|
| 153 |
+
# Apply optional column includes
|
| 154 |
+
for col, sel in selections.items():
|
| 155 |
+
df_filt = apply_optional_column_includes(df_filt, col, sel)
|
| 156 |
+
|
| 157 |
+
if df_filt.empty:
|
| 158 |
+
st.warning("All data filtered out. Adjust filters to see results.")
|
| 159 |
+
st.stop()
|
| 160 |
+
|
| 161 |
+
ordered = compute_ordered(df_filt)
|
| 162 |
+
|
| 163 |
+
# ----------------------------
|
| 164 |
+
# Sidebar sliders (activity & connection thresholds)
|
| 165 |
+
# ----------------------------
|
| 166 |
+
act_counts_for_slider = ordered["activity"].value_counts()
|
| 167 |
+
max_act_allowed = int(act_counts_for_slider.max()) if not act_counts_for_slider.empty else 1
|
| 168 |
+
if max_act_allowed < 1:
|
| 169 |
+
max_act_allowed = 1
|
| 170 |
+
|
| 171 |
+
apply_act_thresh_to_model = st.sidebar.checkbox(
|
| 172 |
+
"Apply activity frequency threshold to the model",
|
| 173 |
+
value=True,
|
| 174 |
+
help="If enabled, activities below the threshold are removed before discovery/visualization."
|
| 175 |
+
)
|
| 176 |
+
min_act = st.sidebar.slider(
|
| 177 |
+
"Min activity frequency to KEEP",
|
| 178 |
+
min_value=1, max_value=max_act_allowed, value=1,
|
| 179 |
+
help="Drops activities whose total frequency is below this value (if enabled above)."
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# Create df_model after activity slider decision
|
| 183 |
+
if apply_act_thresh_to_model:
|
| 184 |
+
df_model = apply_activity_threshold(ordered, min_act)
|
| 185 |
+
else:
|
| 186 |
+
df_model = ordered
|
| 187 |
+
|
| 188 |
+
df_model = compute_ordered(df_model)
|
| 189 |
+
if df_model.empty:
|
| 190 |
+
st.warning("All events dropped by the activity frequency threshold. Lower the threshold.")
|
| 191 |
+
st.stop()
|
| 192 |
+
|
| 193 |
+
# Connection frequency slider (visual-only)
|
| 194 |
+
edge_counts_for_slider = build_edges(df_model)
|
| 195 |
+
max_edge_allowed = int(edge_counts_for_slider["count"].max()) if not edge_counts_for_slider.empty else 1
|
| 196 |
+
if max_edge_allowed < 1:
|
| 197 |
+
max_edge_allowed = 1
|
| 198 |
+
min_edge = st.sidebar.slider(
|
| 199 |
+
"Min connection frequency to SHOW",
|
| 200 |
+
min_value=1, max_value=max_edge_allowed, value=1,
|
| 201 |
+
help="Hides low-frequency connections in the Connections/DFG views (visual-only)."
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
st.sidebar.markdown("---")
|
| 205 |
+
st.sidebar.caption("Activity threshold may modify the model; connection threshold only affects visuals.")
|
| 206 |
+
|
| 207 |
+
# ----------------------------
|
| 208 |
+
# Metrics
|
| 209 |
+
# ----------------------------
|
| 210 |
+
total_cases = df_model["case_id"].nunique()
|
| 211 |
+
total_events = len(df_model)
|
| 212 |
+
unique_acts = df_model["activity"].nunique()
|
| 213 |
+
c1, c2, c3 = st.columns(3)
|
| 214 |
+
c1.metric("Total cases", total_cases)
|
| 215 |
+
c2.metric("Total events", total_events)
|
| 216 |
+
c3.metric("Unique activities", unique_acts)
|
| 217 |
+
|
| 218 |
+
# ----------------------------
|
| 219 |
+
# Activity frequency (reflects min_act)
|
| 220 |
+
# ----------------------------
|
| 221 |
+
st.subheader("Activity frequency")
|
| 222 |
+
act_counts = df_model["activity"].value_counts().rename_axis("activity").reset_index(name="count")
|
| 223 |
+
st.dataframe(act_counts[act_counts["count"] >= min_act], use_container_width=True)
|
| 224 |
+
st.bar_chart(act_counts.set_index("activity")["count"])
|
| 225 |
+
|
| 226 |
+
# ----------------------------
|
| 227 |
+
# Variants (quick & dirty)
|
| 228 |
+
# ----------------------------
|
| 229 |
+
try:
|
| 230 |
+
variants = (
|
| 231 |
+
df_model.groupby("case_id")["activity"]
|
| 232 |
+
.apply(lambda s: " → ".join(s))
|
| 233 |
+
.value_counts()
|
| 234 |
+
)
|
| 235 |
+
st.subheader("Top variants (quick & dirty)")
|
| 236 |
+
st.dataframe(
|
| 237 |
+
variants.rename("count").reset_index().rename(columns={"index": "variant"}).head(20),
|
| 238 |
+
use_container_width=True
|
| 239 |
+
)
|
| 240 |
+
except Exception:
|
| 241 |
+
st.info("Could not compute variants; check your timestamp and activity values.")
|
| 242 |
+
|
| 243 |
+
# ----------------------------
|
| 244 |
+
# Connections (transitions) — respects min_edge (visual-only)
|
| 245 |
+
# ----------------------------
|
| 246 |
+
st.subheader("Connections (transitions)")
|
| 247 |
+
edge_counts = build_edges(df_model)
|
| 248 |
+
if edge_counts.empty:
|
| 249 |
+
st.info("No transitions found after current filters.")
|
| 250 |
+
else:
|
| 251 |
+
st.dataframe(edge_counts[edge_counts["count"] >= min_edge], use_container_width=True)
|
| 252 |
+
|
| 253 |
+
# ----------------------------
|
| 254 |
+
# PM4Py visualizations (clean, frequency, performance, DFG)
|
| 255 |
+
# ----------------------------
|
| 256 |
+
st.subheader("Discovered Process Map")
|
| 257 |
+
try:
|
| 258 |
+
# Lazy imports so app still loads without pm4py
|
| 259 |
+
from pm4py.objects.log.util import dataframe_utils
|
| 260 |
+
from pm4py.objects.conversion.log import converter as log_converter
|
| 261 |
+
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
|
| 262 |
+
from pm4py.visualization.petri_net import visualizer as pn_visualizer
|
| 263 |
+
from pm4py.visualization.process_tree import visualizer as pt_visualizer
|
| 264 |
+
from pm4py.objects.conversion.process_tree import converter as pt_converter
|
| 265 |
+
from pm4py.objects.process_tree import obj as pt_obj
|
| 266 |
+
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
|
| 267 |
+
from pm4py.visualization.dfg import visualizer as dfg_visualization
|
| 268 |
+
|
| 269 |
+
# Prepare dataframe for PM4Py
|
| 270 |
+
pm_df = df_model.rename(columns={
|
| 271 |
+
"case_id": "case:concept:name",
|
| 272 |
+
"activity": "concept:name",
|
| 273 |
+
"timestamp": "time:timestamp"
|
| 274 |
+
}).copy()
|
| 275 |
+
pm_df["time:timestamp"] = pd.to_datetime(pm_df["time:timestamp"], errors="coerce")
|
| 276 |
+
pm_df = pm_df.dropna(subset=["time:timestamp"])
|
| 277 |
+
pm_df = dataframe_utils.convert_timestamp_columns_in_df(pm_df)
|
| 278 |
+
|
| 279 |
+
# Convert to event log
|
| 280 |
+
event_log = log_converter.apply(pm_df)
|
| 281 |
+
|
| 282 |
+
# Discover model
|
| 283 |
+
model = inductive_miner.apply(event_log)
|
| 284 |
+
if isinstance(model, pt_obj.ProcessTree):
|
| 285 |
+
tree = model
|
| 286 |
+
net, im, fm = pt_converter.apply(tree)
|
| 287 |
+
tree_gviz = pt_visualizer.apply(tree)
|
| 288 |
+
else:
|
| 289 |
+
net, im, fm = model
|
| 290 |
+
tree_gviz = None
|
| 291 |
+
|
| 292 |
+
tabs = st.tabs(["Clean Petri Net", "Frequency", "Performance", "DFG (with numbers)"])
|
| 293 |
+
|
| 294 |
+
# --- Clean Petri net ---
|
| 295 |
+
with tabs[0]:
|
| 296 |
+
gviz_pn = pn_visualizer.apply(net, im, fm)
|
| 297 |
+
st.graphviz_chart(gviz_pn.source, use_container_width=True)
|
| 298 |
+
if tree_gviz is not None:
|
| 299 |
+
st.caption("Process Tree (discovered)")
|
| 300 |
+
st.graphviz_chart(tree_gviz.source, use_container_width=True)
|
| 301 |
+
|
| 302 |
+
# --- Frequency-decorated Petri net ---
|
| 303 |
+
with tabs[1]:
|
| 304 |
+
try:
|
| 305 |
+
gviz_freq = pn_visualizer.apply(
|
| 306 |
+
net, im, fm,
|
| 307 |
+
variant=pn_visualizer.Variants.FREQUENCY,
|
| 308 |
+
log=event_log
|
| 309 |
+
)
|
| 310 |
+
st.graphviz_chart(gviz_freq.source, use_container_width=True)
|
| 311 |
+
st.caption("Numbers reflect frequencies from the filtered log.")
|
| 312 |
+
except Exception as e:
|
| 313 |
+
st.info(f"Frequency decoration not available: {e}")
|
| 314 |
+
|
| 315 |
+
# --- Performance-decorated Petri net ---
|
| 316 |
+
with tabs[2]:
|
| 317 |
+
try:
|
| 318 |
+
gviz_perf = pn_visualizer.apply(
|
| 319 |
+
net, im, fm,
|
| 320 |
+
variant=pn_visualizer.Variants.PERFORMANCE,
|
| 321 |
+
log=event_log
|
| 322 |
+
)
|
| 323 |
+
st.graphviz_chart(gviz_perf.source, use_container_width=True)
|
| 324 |
+
st.caption("Numbers reflect performance (e.g., average durations) computed from timestamps.")
|
| 325 |
+
except Exception as e:
|
| 326 |
+
st.info(f"Performance decoration not available: {e}")
|
| 327 |
+
|
| 328 |
+
# --- DFG with numbers (respects min_edge visually) ---
|
| 329 |
+
with tabs[3]:
|
| 330 |
+
try:
|
| 331 |
+
dfg_freq = dfg_discovery.apply(event_log) # {(a,b): count}
|
| 332 |
+
dfg_freq_filtered = {k: v for k, v in dfg_freq.items() if v >= min_edge}
|
| 333 |
+
dfg_freq_gviz = dfg_visualization.apply(
|
| 334 |
+
dfg_freq_filtered if dfg_freq_filtered else dfg_freq,
|
| 335 |
+
log=event_log,
|
| 336 |
+
variant=dfg_visualization.Variants.FREQUENCY
|
| 337 |
+
)
|
| 338 |
+
st.graphviz_chart(dfg_freq_gviz.source, use_container_width=True)
|
| 339 |
+
st.caption("DFG (Frequency): edge labels show counts. Low-frequency edges hidden per slider.")
|
| 340 |
+
|
| 341 |
+
dfg_perf_gviz = dfg_visualization.apply(
|
| 342 |
+
dfg_freq_filtered if dfg_freq_filtered else dfg_freq,
|
| 343 |
+
log=event_log,
|
| 344 |
+
variant=dfg_visualization.Variants.PERFORMANCE
|
| 345 |
+
)
|
| 346 |
+
st.graphviz_chart(dfg_perf_gviz.source, use_container_width=True)
|
| 347 |
+
st.caption("DFG (Performance): edge labels show avg durations. Low-frequency edges hidden per slider.")
|
| 348 |
+
except Exception as e:
|
| 349 |
+
st.info(f"DFG visualization not available: {e}")
|
| 350 |
+
|
| 351 |
+
except ModuleNotFoundError:
|
| 352 |
+
st.error("PM4Py not found. Please ensure pm4py and graphviz are installed.")
|
| 353 |
+
except Exception as e:
|
| 354 |
+
st.warning(f"Could not render process map: {e}")
|
| 355 |
+
|
| 356 |
+
# ----------------------------
|
| 357 |
+
# Credits
|
| 358 |
+
# ----------------------------
|
| 359 |
+
st.markdown("---")
|
| 360 |
+
with st.expander("Credits", expanded=False):
|
| 361 |
+
st.markdown(
|
| 362 |
+
"""
|
| 363 |
+
**Credits**
|
| 364 |
+
Created by **Dennis Arrindell** — creator of the best selling online course about Process Mining on Udemy.
|
| 365 |
+
|
| 366 |
+
100% Vibe coded using ChatGPT
|
| 367 |
+
|
| 368 |
+
Inspired by the pioneering work of **Wil van der Aalst**, the “godfather of process mining.”
|
| 369 |
+
|
| 370 |
+
Powered by the **PM4Py** process mining library, created by **Sebastiaan J. van Zelst** and contributors: https://pm4py.fit.fraunhofer.de/
|
| 371 |
+
|
| 372 |
+
Built with Python and other open-source libraries (pandas, Streamlit, Graphviz, etc.).
|
| 373 |
+
|
| 374 |
+
Full technical information, installation steps, and source code available in the **GitHub repository**.
|
| 375 |
+
"""
|
| 376 |
+
)
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
graphviz
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.35.0
|
| 2 |
+
pm4py==2.7.5
|
| 3 |
+
pandas==2.1.4
|
| 4 |
+
numpy==1.26.4
|
| 5 |
+
graphviz==0.20.3
|
runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.11
|