Spaces:
Sleeping
Sleeping
File size: 18,772 Bytes
fb88467 4814c8e abe8077 4814c8e a1b1ca8 4814c8e 5826098 be5c319 5826098 4814c8e a1b1ca8 4814c8e a1b1ca8 4814c8e e6105b1 4814c8e 5826098 be5c319 38107f5 be5c319 5826098 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e a1b1ca8 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 4814c8e be5c319 38107f5 be5c319 38107f5 be5c319 4814c8e 38107f5 4814c8e be5c319 4814c8e a090f9b 4814c8e a090f9b 4814c8e a090f9b 4814c8e a090f9b 4814c8e a1b1ca8 4814c8e 5826098 be5c319 5826098 4814c8e 0101a8b 4814c8e 2c7422a 9e20c7f 2c7422a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
---
sdk: gradio
sdk_version: "4.19.0"
app_file: "app.py"
pinned: false
---
<div align="center">
<img src="assets/dashboard.png" alt="Dashboard Preview" width="800"/>





**A Comprehensive Explainability and Validation Dashboard for Vision Transformers**
[π Live Demo](#live-demo) | [π Features](#features) | [π‘ Usage Guide](#usage-guide) | [π€ Contributing](#contributing)
</div>
## π Overview
The **ViT Auditing Toolkit** is an advanced, interactive dashboard designed to help researchers, ML practitioners, and AI auditors understand, validate, and improve Vision Transformer (ViT) models. It provides a comprehensive suite of explainability techniques and auditing tools through an intuitive web interface.
### οΏ½ Purpose & Scope
This toolkit is designed as an **Explainable AI (XAI) and Human-Centered AI (HCAI) analysis tool** to help you:
- **Understand model decisions** through visualization and interpretation
- **Identify potential issues** in model behavior before deployment
- **Explore model robustness** through systematic testing
- **Analyze fairness** across different data characteristics
- **Build trust** in AI systems through transparency
**Important**: This is an **exploratory and educational tool** for model analysis and research. For production-level auditing:
- Use comprehensive, representative validation datasets (not single images)
- Conduct systematic bias testing with diverse demographic groups
- Combine automated analysis with domain expert review
- Follow established AI fairness and auditing frameworks
We encourage researchers and practitioners to use this toolkit as a **starting point** for deeper investigation into model behavior, complementing it with rigorous testing protocols and domain expertise.
### οΏ½π Why This Toolkit?
- **π Transparency**: Understand what your ViT models actually "see" and learn
- **β
Validation**: Verify model reliability through systematic testing
- **βοΈ Fairness**: Detect potential biases across different data subgroups
- **π‘οΈ Robustness**: Test prediction stability under various perturbations
- **π Calibration**: Ensure confidence scores reflect true prediction accuracy
---
<a id="features"></a>
## β¨ Features
### π¬ Basic Explainability
Visualize and understand model predictions through multiple state-of-the-art techniques:
- **π¨ Attention Visualization**: See which image patches the transformer focuses on at each layer and head
- **π₯ GradCAM**: Gradient-weighted Class Activation Mapping for highlighting discriminative regions
- **π« GradientSHAP**: Shapley value-based attribution for pixel-level importance
### π Counterfactual Analysis
Test model robustness by systematically perturbing image regions:
- **Patch Perturbation**: Apply blur, blackout, grayscale, or noise to image patches
- **Sensitivity Mapping**: Identify which regions are critical for predictions
- **Prediction Stability**: Measure confidence changes and prediction flip rates
### π Confidence Calibration
Evaluate whether model confidence scores accurately reflect prediction reliability:
- **Calibration Curves**: Visual assessment of confidence vs accuracy alignment
- **Reliability Diagrams**: Binned analysis of prediction calibration
- **Metrics Dashboard**: Mean confidence, overconfidence rate, and underconfidence rate
### βοΈ Bias Detection
Identify performance disparities across different data subgroups:
- **Subgroup Analysis**: Compare performance across demographic or environmental variations
- **Fairness Metrics**: Detect systematic biases in model predictions
- **Comparative Visualization**: Side-by-side analysis of confidence distributions
---
<a id="live-demo"></a>
## π Live Demo
Try the toolkit instantly on Hugging Face Spaces:
### π [Launch Interactive Demo](https://huggingface.co/spaces/Dyra1204/ViT-Auditing-Toolkit)
*No installation required! Upload an image and start exploring.*
---
## οΏ½οΈ Test Images Included
The project includes **20 curated test images** organized by analysis type:
```bash
examples/
βββ basic_explainability/ # 5 images - Clear objects for explanation testing
βββ counterfactual/ # 4 images - Centered subjects for robustness testing
βββ calibration/ # 3 images - Varied quality for confidence testing
βββ bias_detection/ # 4 images - Different conditions for fairness testing
βββ general/ # 4 images - Miscellaneous testing
```
**Quick Download**: Run `python examples/download_samples.py` to get all test images instantly!
See [examples/README.md](examples/README.md) for detailed image descriptions and testing guidelines.
---
## οΏ½πΈ Screenshots
<div align="center">
### Basic Explainability Interface
<img src="assets/basic-explainability-interface.png" alt="Basic Explainability" width="700"/>
### Counterfactual Analysis
<img src="assets/counterfactual-analysis.png" alt="Counterfactual Analysis" width="700"/>
### Confidence Calibration
<img src="assets/confidence-calibration.png" alt="Confidence Calibration" width="700"/>
### Bias Detection
<img src="assets/bias-detection.png" alt="Bias Detection" width="700"/>
</div>
---
<a id="usage-guide"></a>
## π― Usage Guide
### Quick Start (3 Steps)
1. **Select a Model**: Choose between ViT-Base or ViT-Large from the dropdown
2. **Upload Your Image**: Any image you want to analyze (JPG, PNG, etc.) or use provided examples
3. **Choose Analysis Type**: Select from 4 tabs based on your needs
**π‘ Tip**: Use images from the `examples/` directory for quick testing!
### Detailed Workflow
#### π For Understanding Predictions:
```
1. Go to "Basic Explainability" tab
2. Upload your image (try: examples/basic_explainability/cat_portrait.jpg)
3. Select explanation method (Attention/GradCAM/SHAP)
4. Adjust layer/head indices if needed
5. Click "Analyze Image"
6. View predictions and visual explanations
```
**Example Images to Try**:
- `cat_portrait.jpg` - Clear subject for attention visualization
- `sports_car.jpg` - Distinct features for GradCAM
- `bird_flying.jpg` - Dynamic action for SHAP analysis
#### π For Testing Robustness:
```
1. Go to "Counterfactual Analysis" tab
2. Upload your image (try: examples/counterfactual/flower.jpg)
3. Set patch size (16-64 pixels)
4. Choose perturbation type (blur/blackout/gray/noise)
5. Click "Run Analysis"
6. Review sensitivity maps and metrics
```
**Example Images to Try**:
- `face_portrait.jpg` - Test facial feature importance
- `car_side.jpg` - Identify critical vehicle components
- `flower.jpg` - Simple object for baseline testing
#### π For Validating Confidence:
```
1. Go to "Confidence Calibration" tab
2. Upload a sample image (try: examples/calibration/clear_panda.jpg)
3. Adjust number of bins for analysis
4. Click "Analyze Calibration"
5. Review calibration curves and metrics
```
**Example Images to Try**:
- `clear_panda.jpg` - High-quality image (high confidence expected)
- `workspace.jpg` - Complex scene (varied confidence)
- `outdoor_scene.jpg` - Medium difficulty
#### βοΈ For Detecting Bias:
```
1. Go to "Bias Detection" tab
2. Upload a sample image (try: examples/bias_detection/dog_daylight.jpg)
3. Click "Detect Bias"
4. Compare performance across generated subgroups
5. Review fairness metrics
```
**Example Images to Try**:
- `dog_daylight.jpg` - Test lighting variations
- `cat_indoor.jpg` - Indoor vs outdoor performance
- `urban_scene.jpg` - Environmental bias detection
---
## π» Local Installation
### Prerequisites
- Python 3.8 or higher
- CUDA-compatible GPU (optional, but recommended for faster inference)
- 8GB+ RAM
### Step 1: Clone the Repository
```bash
git clone https://github.com/dyra-12/ViT-XAI-Dashboard.git
cd ViT-XAI-Dashboard
```
### Step 2: Create Virtual Environment (Recommended)
```bash
# Using venv
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# OR using conda
conda create -n vit-audit python=3.10
conda activate vit-audit
```
### Step 3: Install Dependencies
```bash
pip install -r requirements.txt
```
### Step 4: Download Test Images (Optional but Recommended)
```bash
# Download 20 curated test images for all tabs
python examples/download_samples.py
# Or use the bash script
chmod +x examples/download_samples.sh
./examples/download_samples.sh
```
This creates an `examples/` directory with images organized by tab.
### Step 5: Run the Application
```bash
python app.py
```
The dashboard will be available at `http://localhost:7860`
### π³ Docker Installation (Alternative)
```bash
# Build the Docker image
docker build -t vit-auditing-toolkit .
# Run the container
docker run -p 7860:7860 vit-auditing-toolkit
```
---
## ποΈ Project Structure
```
ViT-XAI-Dashboard/
β
βββ app.py # Main Gradio application
βββ requirements.txt # Python dependencies
βββ README.md # This file
βββ examples/download_samples.py # Script to download test images
β
βββ src/
β βββ __init__.py
β βββ model_loader.py # ViT model loading from Hugging Face
β βββ predictor.py # Prediction and classification logic
β βββ explainer.py # XAI methods (Attention, GradCAM, SHAP)
β βββ auditor.py # Advanced auditing tools
β βββ utils.py # Helper functions and preprocessing
β
βββ examples/ # 20 curated test images
β βββ basic_explainability/ # Images for Tab 1 testing
β βββ counterfactual/ # Images for Tab 2 testing
β βββ calibration/ # Images for Tab 3 testing
β βββ bias_detection/ # Images for Tab 4 testing
β βββ general/ # General purpose test images
β
βββ tests/
βββ test_phase1_complete.py # Basic functionality tests
βββ test_advanced_features.py # Advanced auditing tests
```
---
## π§ Technical Details
### Vision Transformers (ViT)
Vision Transformers apply the transformer architecture (originally designed for NLP) to computer vision tasks. Key concepts:
- **Patch Embedding**: Images are split into fixed-size patches (e.g., 16Γ16 pixels)
- **Self-Attention**: Each patch attends to all other patches to capture global context
- **Layer Hierarchy**: Multiple transformer layers progressively refine representations
- **Classification Token**: A special [CLS] token aggregates information for final prediction
**Advantages:**
- Strong performance on large-scale datasets
- Captures long-range dependencies better than CNNs
- More interpretable through attention mechanisms
### Explainability Techniques
#### 1. Attention Visualization
**Method**: Direct visualization of transformer attention weights
**Purpose**: Shows which image patches the model focuses on
**Implementation**: Extracts attention matrices from specified layers/heads
```python
# Example: Layer 6, Head 0 typically captures semantic patterns
attention_map = model.encoder.layer[6].attention.self.attention_weights
```
#### 2. GradCAM (Gradient-weighted Class Activation Mapping)
**Method**: Uses gradients flowing into the final conv layer
**Purpose**: Highlights discriminative regions for target class
**Implementation**: Via Captum's `LayerGradCam`
```python
# Generates heatmap showing which regions support the prediction
gradcam = LayerGradCam(model, target_layer)
attribution = gradcam.attribute(input, target=predicted_class)
```
#### 3. GradientSHAP (Gradient-based Shapley Values)
**Method**: Combines Shapley values with gradient information
**Purpose**: Pixel-level attribution with theoretical guarantees
**Implementation**: Via Captum's `GradientShap`
```python
# Computes fair attribution using random baselines
gradient_shap = GradientShap(model)
attributions = gradient_shap.attribute(input, baselines=random_baselines)
```
### Auditing Methodologies
#### Counterfactual Analysis
Systematically modifies image regions to test:
- **Robustness**: Does the prediction remain stable?
- **Feature Importance**: Which regions matter most?
- **Adversarial Vulnerability**: How easy is it to fool the model?
#### Confidence Calibration
Measures alignment between predicted confidence and actual accuracy:
- **Well-calibrated**: 80% confidence β 80% correct
- **Overconfident**: 90% confidence β 60% correct (problem!)
- **Underconfident**: 50% confidence β 80% correct (less critical)
#### Bias Detection
Compares performance across subgroups to identify:
- **Demographic bias**: Different accuracy for different groups
- **Environmental bias**: Performance varies with lighting, quality, etc.
- **Systematic patterns**: Consistent over/under-performance
---
### π§ Supported Models
The dashboard now supports multiple architectures (ViT family and others). The models currently exposed in the UI are:
| Display name | Hugging Face ID | Notes |
|--------------:|-----------------|-------|
| ViT-Base | `google/vit-base-patch16-224` | ViT β attention visualizations and GradCAM supported |
| ViT-Large | `google/vit-large-patch16-224` | ViT β attention visualizations and GradCAM supported |
| ResNet-50 | `microsoft/resnet-50` | CNN β GradCAM supported; attention visualization not applicable |
| Swin Transformer | `microsoft/swin-base-patch4-window7-224` | Swin β GradCAM supported; attention visualization limited to ViT-style models |
| DeiT | `facebook/deit-base-patch16-224` | ViT-like β attention visualizations and GradCAM supported |
| EfficientNet-B7 | `google/efficientnet-b7` | CNN β loaded via Hugging Face when possible; if HF loading triggers a torch.load restriction, the app falls back to `timm` (no torch upgrade required). GradCAM supported; attention visualization not applicable |
Notes:
- Attention visualizations (patch-level attention maps) are meaningful for ViT-style models (ViT, DeiT). For CNNs (ResNet, EfficientNet) and some hierarchical transformers (Swin), the dashboard will use GradCAM or a last-conv fallback instead of patch attention.
- EfficientNet on the Hugging Face hub can trigger a torch.load security restriction in older torch versions. The toolkit will transparently fall back to a `timm`-based loader to avoid requiring a torch upgrade; this is handled automatically in `src/model_loader.py`.
**Easy to extend**: Add more models to `src/model_loader.py` under `SUPPORTED_MODELS` and they will appear in the app dropdown.
---
## π¦ Dependencies
### Core Libraries
- **PyTorch** (β₯2.2.0): Deep learning framework
- **Transformers** (β₯4.35.0): Hugging Face model hub
- **Gradio** (β₯4.19.0): Web interface framework
- **Captum** (β₯0.7.0): Model interpretability library
### Supporting Libraries
- **Pillow**: Image processing
- **Matplotlib**: Visualization
- **NumPy**: Numerical computations
See `requirements.txt` for complete list with version constraints.
---
## π Use Cases
### Research
- **Interpretability Studies**: Analyze transformer attention patterns
- **Benchmark Explainability**: Compare XAI methods systematically
- **Model Auditing**: Validate models before deployment
### Industry
- **Model Validation**: Ensure reliability before production
- **Bias Auditing**: Detect and mitigate fairness issues
- **Regulatory Compliance**: Document model decision-making
### Education
- **Teaching Tool**: Demonstrate XAI concepts interactively
- **Student Projects**: Foundation for ML course assignments
- **Research Training**: Hands-on experience with modern techniques
---
<a id="contributing"></a>
## π€ Contributing
Contributions are welcome! Here's how you can help:
### Ways to Contribute
1. **π Bug Reports**: Open an issue with detailed reproduction steps
2. **β¨ Feature Requests**: Suggest new explainability methods or auditing tools
3. **π Documentation**: Improve guides, add examples, fix typos
4. **π» Code**: Submit pull requests for new features or fixes
5. **π¨ UI/UX**: Enhance the dashboard design and user experience
### Development Setup
```bash
# Fork and clone the repository
git clone https://github.com/YOUR-USERNAME/ViT-XAI-Dashboard.git
cd ViT-XAI-Dashboard
# Create a feature branch
git checkout -b feature/your-feature-name
# Make changes and test
python -m pytest tests/
# Commit and push
git commit -m "Add: your feature description"
git push origin feature/your-feature-name
# Open a pull request
```
### Code Style
- Follow PEP 8 guidelines
- Add docstrings to all functions
- Include type hints where applicable
- Write unit tests for new features
---
## οΏ½ Additional Resources
- **[QUICKSTART.md](QUICKSTART.md)** - Get started in 5 minutes
- **[TESTING.md](TESTING.md)** - Comprehensive testing guide with 22 test cases
- **[CONTRIBUTING.md](CONTRIBUTING.md)** - Guidelines for contributors
- **[CHEATSHEET.md](CHEATSHEET.md)** - Quick reference for common tasks
- **[examples/README.md](examples/README.md)** - Detailed test image guide
---
## οΏ½π License
This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details.
```
MIT License
Copyright (c) 2024 ViT Auditing Toolkit Contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
[Full license text...]
```
---
## Contact & Support
- **GitHub Issues**: [Report bugs or request features](https://github.com/dyra-12/ViT-XAI-Dashboard/issues)
- **Discussions**: [Ask questions or share ideas](https://github.com/dyra-12/ViT-XAI-Dashboard/discussions)
- **Email**: dyra12@example.com
---
<div align="center">
**Built with β€οΈ by the community**
[β¬ Back to Top](#-vit-auditing-toolkit)
</div>
=======
title: ViT Auditing Toolkit
emoji: π»
colorFrom: gray
colorTo: red
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
>>>>>>> hf/main
|