File size: 10,202 Bytes
be5c319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# πŸ§ͺ Testing Guide for ViT Auditing Toolkit

Complete guide for testing all features using the provided sample images.

## πŸ“‹ Quick Test Checklist

- [ ] Basic Explainability - Attention Visualization
- [ ] Basic Explainability - GradCAM
- [ ] Basic Explainability - GradientSHAP
- [ ] Counterfactual Analysis - All perturbation types
- [ ] Confidence Calibration - Different bin sizes
- [ ] Bias Detection - Multiple subgroups
- [ ] Model Switching (ViT-Base ↔ ViT-Large)

---

## πŸ” Tab 1: Basic Explainability Testing

### Test 1: Attention Visualization
**Image**: `examples/basic_explainability/cat_portrait.jpg`

**Steps**:
1. Load ViT-Base model
2. Upload cat_portrait.jpg
3. Select "Attention Visualization"
4. Try these layer/head combinations:
   - Layer 0, Head 0 (low-level features)
   - Layer 6, Head 0 (mid-level patterns)
   - Layer 11, Head 0 (high-level semantics)

**Expected Results**:
- βœ… Early layers: Focus on edges, textures
- βœ… Middle layers: Focus on cat features (ears, eyes)
- βœ… Late layers: Focus on discriminative regions (face)

---

### Test 2: GradCAM Visualization
**Image**: `examples/basic_explainability/sports_car.jpg`

**Steps**:
1. Upload sports_car.jpg
2. Select "GradCAM" method
3. Click "Analyze Image"

**Expected Results**:
- βœ… Heatmap highlights car body, wheels
- βœ… Prediction confidence > 70%
- βœ… Top class includes "sports car" or "convertible"

---

### Test 3: GradientSHAP
**Image**: `examples/basic_explainability/bird_flying.jpg`

**Steps**:
1. Upload bird_flying.jpg
2. Select "GradientSHAP" method
3. Wait for analysis (takes ~10-15 seconds)

**Expected Results**:
- βœ… Attribution map shows bird outline
- βœ… Wings and body highlighted
- βœ… Background has low attribution

---

### Test 4: Multiple Objects
**Image**: `examples/basic_explainability/coffee_cup.jpg`

**Steps**:
1. Upload coffee_cup.jpg
2. Try all three methods
3. Compare explanations

**Expected Results**:
- βœ… All methods highlight the cup
- βœ… Consistent predictions across methods
- βœ… Some variation in exact highlighted regions

---

## πŸ”„ Tab 2: Counterfactual Analysis Testing

### Test 5: Face Feature Importance
**Image**: `examples/counterfactual/face_portrait.jpg`

**Steps**:
1. Upload face_portrait.jpg
2. Settings:
   - Patch size: 32
   - Perturbation: blur
3. Click "Run Counterfactual Analysis"

**Expected Results**:
- βœ… Face region shows high sensitivity
- βœ… Background regions have low impact
- βœ… Prediction flip rate < 50%

---

### Test 6: Vehicle Components
**Image**: `examples/counterfactual/car_side.jpg`

**Steps**:
1. Upload car_side.jpg
2. Test each perturbation type:
   - Blur
   - Blackout
   - Gray
   - Noise
3. Compare results

**Expected Results**:
- βœ… Wheels are critical regions
- βœ… Windows/doors moderately important
- βœ… Blackout causes most disruption

---

### Test 7: Architectural Elements
**Image**: `examples/counterfactual/building.jpg`

**Steps**:
1. Upload building.jpg
2. Patch size: 48
3. Perturbation: gray

**Expected Results**:
- βœ… Structural elements highlighted
- βœ… Lower flip rate (buildings are robust)
- βœ… Consistent confidence across patches

---

### Test 8: Simple Object Baseline
**Image**: `examples/counterfactual/flower.jpg`

**Steps**:
1. Upload flower.jpg
2. Try smallest patch size (16)
3. Use blackout perturbation

**Expected Results**:
- βœ… Flower center most critical
- βœ… Petals moderately important
- βœ… Background has minimal impact

---

## πŸ“Š Tab 3: Confidence Calibration Testing

### Test 9: High-Quality Image
**Image**: `examples/calibration/clear_panda.jpg`

**Steps**:
1. Upload clear_panda.jpg
2. Number of bins: 10
3. Run analysis

**Expected Results**:
- βœ… High mean confidence (> 0.8)
- βœ… Low overconfident rate
- βœ… Calibration curve near diagonal

---

### Test 10: Complex Scene
**Image**: `examples/calibration/workspace.jpg`

**Steps**:
1. Upload workspace.jpg
2. Number of bins: 15
3. Compare with panda results

**Expected Results**:
- βœ… Lower mean confidence (multiple objects)
- βœ… Higher variance in predictions
- βœ… More distributed across bins

---

### Test 11: Bin Size Comparison
**Image**: `examples/calibration/outdoor_scene.jpg`

**Steps**:
1. Upload outdoor_scene.jpg
2. Test with bins: 5, 10, 20
3. Compare calibration curves

**Expected Results**:
- βœ… More bins = finer granularity
- βœ… General trend consistent
- βœ… 10 bins usually optimal

---

## βš–οΈ Tab 4: Bias Detection Testing

### Test 12: Lighting Conditions
**Image**: `examples/bias_detection/dog_daylight.jpg`

**Steps**:
1. Upload dog_daylight.jpg
2. Run bias detection
3. Note confidence for daylight subgroup

**Expected Results**:
- βœ… 4 subgroups generated (original, bright+, bright-, contrast+)
- βœ… Confidence varies across subgroups
- βœ… Original has highest confidence typically

---

### Test 13: Indoor vs Outdoor
**Images**: 
- `examples/bias_detection/cat_indoor.jpg`
- `examples/bias_detection/bird_outdoor.jpg`

**Steps**:
1. Test both images separately
2. Compare confidence distributions
3. Note any systematic differences

**Expected Results**:
- βœ… Both should predict correctly
- βœ… Confidence may vary
- βœ… Subgroup metrics show variations

---

### Test 14: Urban Environment
**Image**: `examples/bias_detection/urban_scene.jpg`

**Steps**:
1. Upload urban_scene.jpg
2. Run bias detection
3. Check for environmental bias

**Expected Results**:
- βœ… Multiple objects detected
- βœ… Varied confidence across subgroups
- βœ… Brightness variations affect predictions

---

## 🎯 Cross-Tab Testing

### Test 15: Same Image, All Tabs
**Image**: `examples/general/pizza.jpg`

**Steps**:
1. Tab 1: Check predictions and explanations
2. Tab 2: Test robustness with perturbations
3. Tab 3: Check confidence calibration
4. Tab 4: Analyze across subgroups

**Expected Results**:
- βœ… Consistent predictions across tabs
- βœ… High confidence (pizza is clear class)
- βœ… Robust to perturbations
- βœ… Well-calibrated

---

### Test 16: Model Comparison
**Image**: `examples/general/laptop.jpg`

**Steps**:
1. Load ViT-Base, analyze laptop.jpg in Tab 1
2. Note top predictions and confidence
3. Load ViT-Large, analyze same image
4. Compare results

**Expected Results**:
- βœ… ViT-Large slightly higher confidence
- βœ… Similar top predictions
- βœ… Better attention patterns (Large)
- βœ… Longer inference time (Large)

---

### Test 17: Edge Case Testing
**Image**: `examples/general/mountain.jpg`

**Steps**:
1. Test in all tabs
2. Note predictions (landscape/nature)
3. Check explanation quality

**Expected Results**:
- βœ… May predict multiple classes (mountain, valley, landscape)
- βœ… Lower confidence (ambiguous category)
- βœ… Attention spread across scene

---

### Test 18: Furniture Classification
**Image**: `examples/general/chair.jpg`

**Steps**:
1. Basic explainability test
2. Counterfactual with blur
3. Check which parts are critical

**Expected Results**:
- βœ… Predicts chair/furniture
- βœ… Legs and seat are critical
- βœ… Background less important

---

## πŸ”§ Performance Testing

### Test 19: Load Time
**Steps**:
1. Clear browser cache
2. Time model loading
3. Note first analysis time vs subsequent

**Expected**:
- First load: 5-15 seconds
- Subsequent: < 1 second
- Analysis: 2-5 seconds per image

---

### Test 20: Memory Usage
**Steps**:
1. Open browser dev tools
2. Monitor memory during analysis
3. Test with both models

**Expected**:
- ViT-Base: ~2GB RAM
- ViT-Large: ~4GB RAM
- No memory leaks over multiple analyses

---

## πŸ› Error Handling Testing

### Test 21: Invalid Inputs
**Steps**:
1. Try uploading non-image file
2. Try very large image (> 50MB)
3. Try corrupted image

**Expected**:
- βœ… Graceful error messages
- βœ… No crashes
- βœ… User-friendly feedback

---

### Test 22: Edge Cases
**Steps**:
1. Try extremely dark/bright images
2. Try pure noise images
3. Try text-only images

**Expected**:
- βœ… Model makes predictions
- βœ… Lower confidence expected
- βœ… Explanations still generated

---

## πŸ“ Test Results Template

```markdown
## Test Session: [Date]

**Tester**: [Name]
**Model**: ViT-Base / ViT-Large
**Browser**: [Chrome/Firefox/Safari]
**Environment**: [Local/Docker/Cloud]

### Results Summary:
- Tests Passed: __/22
- Tests Failed: __/22
- Critical Issues: __
- Minor Issues: __

### Detailed Results:

#### Test 1: Attention Visualization
- Status: βœ… Pass / ❌ Fail
- Notes: [observations]

[Continue for all tests...]

### Issues Found:
1. [Issue description]
   - Severity: Critical/Major/Minor
   - Steps to reproduce:
   - Expected: 
   - Actual:

### Recommendations:
- [Improvement suggestions]
```

---

## πŸš€ Quick Smoke Test (5 minutes)

Fastest way to verify everything works:

```bash
# 1. Start app
python app.py

# 2. Load ViT-Base model

# 3. Quick tests:
Tab 1: Upload examples/basic_explainability/cat_portrait.jpg β†’ Analyze
Tab 2: Upload examples/counterfactual/flower.jpg β†’ Analyze
Tab 3: Upload examples/calibration/clear_panda.jpg β†’ Analyze
Tab 4: Upload examples/bias_detection/dog_daylight.jpg β†’ Analyze

# 4. All should complete without errors
```

---

## πŸ“Š Automated Testing

Run automated tests:

```bash
# Unit tests
pytest tests/test_phase1_complete.py -v

# Advanced features tests
pytest tests/test_advanced_features.py -v

# All tests with coverage
pytest tests/ --cov=src --cov-report=html
```

---

## πŸŽ“ User Acceptance Testing

**Scenario 1: First-time User**
- Can they understand the interface?
- Can they complete basic analysis?
- Is documentation helpful?

**Scenario 2: Researcher**
- Can they compare multiple methods?
- Can they export results?
- Is explanation quality sufficient?

**Scenario 3: ML Practitioner**
- Can they validate their model?
- Are metrics meaningful?
- Can they identify issues?

---

## βœ… Sign-off Criteria

Before considering testing complete:

- [ ] All 22 tests pass
- [ ] No critical bugs
- [ ] Performance acceptable
- [ ] Documentation accurate
- [ ] User feedback positive
- [ ] All tabs functional
- [ ] Both models work
- [ ] Error handling robust

---

**Happy Testing! πŸŽ‰**

For issues or questions, see [CONTRIBUTING.md](CONTRIBUTING.md)