File size: 2,681 Bytes
8d29339 5c312ac 7ff12f8 8d29339 7ff12f8 8d29339 7ff12f8 8d29339 7ff12f8 0f58c67 ac3878a 0f58c67 7ff12f8 5c312ac 7ff12f8 aa84d81 0395bcc 7ff12f8 aa84d81 7ff12f8 cb638c9 07c391d aa84d81 07c391d 7ff12f8 07c391d 7ff12f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import os
import joblib
import langchain
import streamlit as st
import pickle as pkl
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_community.document_loaders import UnstructuredURLLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
import time
load_dotenv("ping.env")
api_key=os.getenv("OPENAI_API_KEY")
api_base=os.getenv("OPENAI_API_BASE")
llm=ChatOpenAI(model_name="google/gemma-3n-e2b-it:free",temperature=0)
try:
with open("embedmo.pkl", "rb") as f:
m1 = pkl.load(f)
# Quick sanity check
if not isinstance(m1, SentenceTransformerEmbeddings):
raise ValueError("Loaded object is not a SentenceTransformerEmbeddings instance.")
except Exception as e:
st.error(f"Failed to load embedding model: {str(e)}")
st.stop()
m2=joblib.load("m1.joblib")
st.title("URL ANALYSER๐")
st.sidebar.title("Give your URls๐?")
mp=st.empty()
url1=st.sidebar.text_input(f"URL 1๐")
url2=st.sidebar.text_input(f"URL 2๐")
url3=st.sidebar.text_input(f"URL 3๐")
purs=st.button("gotcha")
if purs:
st.write(url1)
st.write(url2)
st.write(url3)
mp.text("Loading..URl..Loader....โ๏ธโ๏ธโ๏ธ")
sic=UnstructuredURLLoader(urls=[url1,url2,url3])
docs=sic.load()
st.write(len(docs))
mp.text("Loading..txt..splitter....โ๏ธโ๏ธโ๏ธ")
tot=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512,chunk_overlap=16)
doccs=tot.split_documents(docs)
st.write(len(doccs))
mp.text("Loading..VB...โ๏ธโ๏ธโ๏ธ")
vv=Chroma.from_documents(doccs,m1)
r2=vv.as_retriever(search_type="similarity",search_kwargs={"k":4})
mp.text("Loading..Retri....โ๏ธโ๏ธโ๏ธ")
ra1=RetrievalQAWithSourcesChain.from_chain_type(llm=llm,retriever=r2,chain_type="map_reduce")
st.session_state.ra1=ra1
mp.text("DB & Retri Done โ
โ
โ
")
time.sleep(3)
query=mp.text_input("UR Question??")
if query:
if "ra1" not in st.session_state:
st.warning("pls give ur urls")
else:
with st.spinner("Wait for it..."):
result=st.session_state.ra1({"question":query},return_only_outputs=True)
st.header("Answer")
st.subheader(result["answer"])
g = st.button("Source")
if g:
sources = result.get("sources", "")
st.subheader("Sources")
for line in sources.split("\n"):
st.write(line)
|