import os import joblib import langchain import streamlit as st import pickle as pkl from langchain.chains import RetrievalQAWithSourcesChain from langchain_community.document_loaders import UnstructuredURLLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import SentenceTransformerEmbeddings from langchain_community.vectorstores import Chroma, FAISS from langchain_openai import ChatOpenAI from dotenv import load_dotenv import time load_dotenv("ping.env") api_key=os.getenv("OPENAI_API_KEY") api_base=os.getenv("OPENAI_API_BASE") llm=ChatOpenAI(model_name="google/gemma-3n-e2b-it:free",temperature=0) try: with open("embedmo.pkl", "rb") as f: m1 = pkl.load(f) # Quick sanity check if not isinstance(m1, SentenceTransformerEmbeddings): raise ValueError("Loaded object is not a SentenceTransformerEmbeddings instance.") except Exception as e: st.error(f"Failed to load embedding model: {str(e)}") st.stop() m2=joblib.load("m1.joblib") st.title("URL ANALYSERπŸ”—") st.sidebar.title("Give your URlsπŸ”—?") mp=st.empty() url1=st.sidebar.text_input(f"URL 1πŸ”—") url2=st.sidebar.text_input(f"URL 2πŸ”—") url3=st.sidebar.text_input(f"URL 3πŸ”—") purs=st.button("gotcha") if purs: st.write(url1) st.write(url2) st.write(url3) mp.text("Loading..URl..Loader....β˜‘οΈβ˜‘οΈβ˜‘οΈ") sic=UnstructuredURLLoader(urls=[url1,url2,url3]) docs=sic.load() st.write(len(docs)) mp.text("Loading..txt..splitter....β˜‘οΈβ˜‘οΈβ˜‘οΈ") tot=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512,chunk_overlap=16) doccs=tot.split_documents(docs) st.write(len(doccs)) mp.text("Loading..VB...β˜‘οΈβ˜‘οΈβ˜‘οΈ") vv=Chroma.from_documents(doccs,m1) r2=vv.as_retriever(search_type="similarity",search_kwargs={"k":4}) mp.text("Loading..Retri....β˜‘οΈβ˜‘οΈβ˜‘οΈ") ra1=RetrievalQAWithSourcesChain.from_chain_type(llm=llm,retriever=r2,chain_type="map_reduce") st.session_state.ra1=ra1 mp.text("DB & Retri Done βœ…βœ…βœ…") time.sleep(3) query=mp.text_input("UR Question??") if query: if "ra1" not in st.session_state: st.warning("pls give ur urls") else: with st.spinner("Wait for it..."): result=st.session_state.ra1({"question":query},return_only_outputs=True) st.header("Answer") st.subheader(result["answer"]) g = st.button("Source") if g: sources = result.get("sources", "") st.subheader("Sources") for line in sources.split("\n"): st.write(line)