|
|
import gradio as gr |
|
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
""" |
|
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
|
""" |
|
|
client = InferenceClient("swiss-ai/Apertus-8B-Instruct-2509") |
|
|
|
|
|
def respond( |
|
|
message, |
|
|
history: list[tuple[str, str]], |
|
|
system_message, |
|
|
max_tokens, |
|
|
temperature, |
|
|
top_p, |
|
|
): |
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
|
if val[0]: |
|
|
messages.append({"role": "user", "content": val[0]}) |
|
|
if val[1]: |
|
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
|
|
|
|
try: |
|
|
for chunk in client.chat_completion( |
|
|
messages, |
|
|
max_tokens=max_tokens, |
|
|
stream=True, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
): |
|
|
try: |
|
|
|
|
|
if hasattr(chunk.choices[0], "delta") and chunk.choices[0].delta and getattr(chunk.choices[0].delta, "content", None): |
|
|
content = chunk.choices[0].delta.content |
|
|
|
|
|
elif hasattr(chunk.choices[0], "message") and chunk.choices[0].message and getattr(chunk.choices[0].message, "content", None): |
|
|
content = chunk.choices[0].message.content |
|
|
else: |
|
|
continue |
|
|
|
|
|
response += content |
|
|
yield response |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Erro ao processar chunk: {e}") |
|
|
continue |
|
|
|
|
|
except Exception as e: |
|
|
yield f"Erro inesperado: {e}" |
|
|
|
|
|
if response.strip() == "": |
|
|
yield "⚠️ O modelo não retornou resposta. Tente ajustar max_tokens, temperature ou escolha outro modelo." |
|
|
|
|
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
respond, |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"), |
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
|
gr.Slider( |
|
|
minimum=0.1, |
|
|
maximum=1.0, |
|
|
value=0.95, |
|
|
step=0.05, |
|
|
label="Top-p (nucleus sampling)", |
|
|
), |
|
|
], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|