Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,101 +1,67 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
from transformers import
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
("Started new medication for pain management.", "non-surgery"),
|
| 10 |
-
("Scheduled for surgery next week. Nervous but hopeful.", "surgery"),
|
| 11 |
-
("Attended a seminar on non-surgical treatments.", "non-surgery"),
|
| 12 |
-
]
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
train_labels = [label_mapping[label] for label in train_labels]
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
for text, label in zip(train_texts, train_labels):
|
| 22 |
-
st.write(f"Text: {text}\nLabel: {label}\n")
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
self.texts = texts
|
| 33 |
-
self.labels = labels
|
| 34 |
-
self.tokenizer = tokenizer
|
| 35 |
-
self.max_seq_length = max_seq_length
|
| 36 |
-
|
| 37 |
-
def __len__(self):
|
| 38 |
-
return len(self.texts)
|
| 39 |
-
|
| 40 |
-
def __getitem__(self, idx):
|
| 41 |
-
text = self.texts[idx]
|
| 42 |
-
label = self.labels[idx]
|
| 43 |
-
|
| 44 |
-
encoding = self.tokenizer(
|
| 45 |
-
text,
|
| 46 |
-
return_tensors="pt",
|
| 47 |
-
padding='max_length', # Pad sequences to the maximum sequence length
|
| 48 |
-
truncation=True,
|
| 49 |
-
max_length=self.max_seq_length
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
return {
|
| 53 |
-
"input_ids": encoding["input_ids"].squeeze(),
|
| 54 |
-
"attention_mask": encoding["attention_mask"].squeeze(),
|
| 55 |
-
"labels": torch.tensor(label)
|
| 56 |
-
}
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Data Collator
|
| 61 |
-
data_collator = DataCollatorForLanguageModeling(
|
| 62 |
-
tokenizer=tokenizer,
|
| 63 |
-
mlm_probability=0.15
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
val_size = len(dataset) - train_size
|
| 72 |
-
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
| 73 |
|
| 74 |
-
#
|
| 75 |
training_args = TrainingArguments(
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
| 85 |
trainer = Trainer(
|
| 86 |
model=model,
|
| 87 |
args=training_args,
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
st.
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
st.write("
|
| 100 |
-
with open('./logs/train.log', 'r') as log_file:
|
| 101 |
-
st.code(log_file.read())
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import evaluate
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, TrainingArguments, Trainer, DataCollatorWithPadding
|
| 5 |
|
| 6 |
+
# Load tokenizer and model
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 8 |
+
model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Define label mappings
|
| 11 |
+
id2label = {0: "SURGERY", 1: "NON-SURGERY"}
|
| 12 |
+
label2id = {"SURGERY": 0, "NON-SURGERY": 1}
|
|
|
|
| 13 |
|
| 14 |
+
# Load evaluation metric
|
| 15 |
+
accuracy = evaluate.load("accuracy")
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Define preprocessing function
|
| 18 |
+
def preprocess_function(examples):
|
| 19 |
+
return tokenizer(examples, truncation=True, padding=True)
|
|
|
|
| 20 |
|
| 21 |
+
# Load model for sequence classification
|
| 22 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 23 |
+
"emilyalsentzer/Bio_ClinicalBERT", num_labels=2, id2label=id2label, label2id=label2id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
+
# Define compute_metrics function
|
| 27 |
+
def compute_metrics(eval_pred):
|
| 28 |
+
predictions, labels = eval_pred
|
| 29 |
+
predictions = np.argmax(predictions, axis=1)
|
| 30 |
+
return accuracy.compute(predictions=predictions, references=labels)
|
| 31 |
|
| 32 |
+
# Define data collator
|
| 33 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Define training arguments
|
| 36 |
training_args = TrainingArguments(
|
| 37 |
+
output_dir="my_awesome_model",
|
| 38 |
+
learning_rate=2e-5,
|
| 39 |
+
per_device_train_batch_size=16,
|
| 40 |
+
per_device_eval_batch_size=16,
|
| 41 |
+
num_train_epochs=2,
|
| 42 |
+
weight_decay=0.01,
|
| 43 |
+
evaluation_strategy="epoch",
|
| 44 |
+
save_strategy="epoch",
|
| 45 |
+
load_best_model_at_end=True,
|
| 46 |
+
push_to_hub=True,
|
| 47 |
+
)
|
| 48 |
|
| 49 |
+
# Initialize trainer
|
| 50 |
trainer = Trainer(
|
| 51 |
model=model,
|
| 52 |
args=training_args,
|
| 53 |
+
tokenizer=tokenizer,
|
| 54 |
+
data_collator=data_collator,
|
| 55 |
+
compute_metrics=compute_metrics,
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# Streamlit UI
|
| 59 |
+
st.title("Clinical Text Classification")
|
| 60 |
+
text = st.text_area("Enter clinical text:", "")
|
| 61 |
|
| 62 |
+
if st.button("Classify"):
|
| 63 |
+
# Tokenize user input and predict
|
| 64 |
+
tokenized_text = preprocess_function(text)
|
| 65 |
+
result = trainer.predict(tokenized_text)
|
| 66 |
+
prediction = np.argmax(result.predictions, axis=1)[0]
|
| 67 |
+
st.write("Predicted Label:", id2label[prediction])
|
|
|
|
|
|