Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,8 +22,9 @@ def gradio_predict(input_text):
|
|
| 22 |
input_ids = tokenized_input["input_ids"].astype(np.int64)
|
| 23 |
attention_mask = tokenized_input["attention_mask"].astype(np.int64)
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
print("Initial shapes:")
|
| 29 |
print(f"input_ids shape: {input_ids.shape}")
|
|
@@ -40,24 +41,15 @@ def gradio_predict(input_text):
|
|
| 40 |
}
|
| 41 |
)
|
| 42 |
|
| 43 |
-
print("Output information:")
|
| 44 |
-
print(f"outputs type: {type(outputs)}")
|
| 45 |
-
print(f"outputs length: {len(outputs)}")
|
| 46 |
-
print(f"outputs[0] shape: {outputs[0].shape}")
|
| 47 |
-
|
| 48 |
# Get logits and convert to token ids
|
| 49 |
logits = outputs[0]
|
| 50 |
token_ids = np.argmax(logits[0], axis=-1)
|
| 51 |
|
| 52 |
-
# Find end of sequence
|
| 53 |
-
|
| 54 |
-
end_idx = np.where(token_ids == eos_token_id)[0]
|
| 55 |
if len(end_idx) > 0:
|
| 56 |
token_ids = token_ids[:end_idx[0]]
|
| 57 |
|
| 58 |
-
print(f"token_ids shape: {token_ids.shape}")
|
| 59 |
-
print(f"token_ids: {token_ids}")
|
| 60 |
-
|
| 61 |
# Decode the sequence
|
| 62 |
translated_text = tokenizer.decode(token_ids, skip_special_tokens=True)
|
| 63 |
return translated_text
|
|
|
|
| 22 |
input_ids = tokenized_input["input_ids"].astype(np.int64)
|
| 23 |
attention_mask = tokenized_input["attention_mask"].astype(np.int64)
|
| 24 |
|
| 25 |
+
# Use a specific token ID for decoder start (for Helsinki-NLP models)
|
| 26 |
+
decoder_start_token_id = 59513 # This is the typical start token for Helsinki-NLP models
|
| 27 |
+
decoder_input_ids = np.array([[decoder_start_token_id]], dtype=np.int64)
|
| 28 |
|
| 29 |
print("Initial shapes:")
|
| 30 |
print(f"input_ids shape: {input_ids.shape}")
|
|
|
|
| 41 |
}
|
| 42 |
)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
# Get logits and convert to token ids
|
| 45 |
logits = outputs[0]
|
| 46 |
token_ids = np.argmax(logits[0], axis=-1)
|
| 47 |
|
| 48 |
+
# Find end of sequence (using pad token since eos might also be None)
|
| 49 |
+
end_idx = np.where(token_ids == tokenizer.pad_token_id)[0]
|
|
|
|
| 50 |
if len(end_idx) > 0:
|
| 51 |
token_ids = token_ids[:end_idx[0]]
|
| 52 |
|
|
|
|
|
|
|
|
|
|
| 53 |
# Decode the sequence
|
| 54 |
translated_text = tokenizer.decode(token_ids, skip_special_tokens=True)
|
| 55 |
return translated_text
|