Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,6 +16,7 @@ from langchain.schema import (
|
|
| 16 |
from langchain_core.output_parsers import StrOutputParser
|
| 17 |
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 18 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
| 19 |
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
| 20 |
from qdrant_client.http import models as rest
|
| 21 |
#from qdrant_client import QdrantClient
|
|
@@ -34,7 +35,7 @@ HF_token = os.environ["HF_TOKEN"]
|
|
| 34 |
# process all files and get the vectorstores collections
|
| 35 |
# vectorestore colection are stored on persistent storage so this needs to be run only once
|
| 36 |
# hence, comment out line below when creating for first time
|
| 37 |
-
vectorstores =
|
| 38 |
# once the vectore embeddings are created we will qdrant client to access these
|
| 39 |
#vectorstores = get_local_qdrant()
|
| 40 |
|
|
|
|
| 16 |
from langchain_core.output_parsers import StrOutputParser
|
| 17 |
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 18 |
from langchain_community.llms import HuggingFaceEndpoint
|
| 19 |
+
from process_chunks import load_chunks
|
| 20 |
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
| 21 |
from qdrant_client.http import models as rest
|
| 22 |
#from qdrant_client import QdrantClient
|
|
|
|
| 35 |
# process all files and get the vectorstores collections
|
| 36 |
# vectorestore colection are stored on persistent storage so this needs to be run only once
|
| 37 |
# hence, comment out line below when creating for first time
|
| 38 |
+
vectorstores = load_chunks()
|
| 39 |
# once the vectore embeddings are created we will qdrant client to access these
|
| 40 |
#vectorstores = get_local_qdrant()
|
| 41 |
|