Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,18 +8,16 @@ import spaces
|
|
| 8 |
import torch
|
| 9 |
from PIL import Image
|
| 10 |
from diffusers import FluxInpaintPipeline
|
| 11 |
-
|
| 12 |
from gradio_client import Client, handle_file
|
| 13 |
-
from PIL import Image
|
| 14 |
|
| 15 |
# Set an environment variable
|
| 16 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 17 |
|
| 18 |
MARKDOWN = """
|
| 19 |
# FLUX.1 Inpainting with Text guided Mask🔥
|
| 20 |
-
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for FLUX
|
| 21 |
-
[Piotr Skalski](https://huggingface.co/SkalskiP)
|
| 22 |
-
for enabling and [showcasing inpainting](https://huggingface.co/spaces/SkalskiP/FLUX.1-inpaint) with the FLUX.
|
| 23 |
"""
|
| 24 |
|
| 25 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -29,7 +27,6 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 29 |
# Using Gradio Python Client to query EVF-SAM demo, hosted on SPaces, as an endpoint
|
| 30 |
client = Client("ysharma/evf-sam", hf_token=HF_TOKEN)
|
| 31 |
|
| 32 |
-
|
| 33 |
pipe = FluxInpaintPipeline.from_pretrained(
|
| 34 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 35 |
|
|
@@ -60,17 +57,12 @@ def resize_image_dimensions(
|
|
| 60 |
|
| 61 |
|
| 62 |
def evf_sam_mask(image, prompt):
|
| 63 |
-
print(image)
|
| 64 |
images = client.predict(
|
| 65 |
image_np=handle_file(image),
|
| 66 |
prompt=prompt,
|
| 67 |
api_name="/predict")
|
| 68 |
-
print(images)
|
| 69 |
# Open the mask image
|
| 70 |
pil_image = Image.open(images[1])
|
| 71 |
-
print(pil_image)
|
| 72 |
-
print(type(pil_image))
|
| 73 |
-
|
| 74 |
return pil_image
|
| 75 |
|
| 76 |
@spaces.GPU(duration=150)
|
|
@@ -88,13 +80,7 @@ def process(
|
|
| 88 |
gr.Info("Please enter a text prompt.")
|
| 89 |
return None
|
| 90 |
|
| 91 |
-
#image = input_image_editor['background']
|
| 92 |
-
#mask = input_image_editor['layers'][0]
|
| 93 |
-
print(f"type of image: {type(input_image)}")
|
| 94 |
mask = evf_sam_mask(input_image, input_text)
|
| 95 |
-
print(f"type of mask: {type(mask)}")
|
| 96 |
-
print(f"inpaint_text: {inpaint_text}")
|
| 97 |
-
print(f"input_text: {input_text}")
|
| 98 |
|
| 99 |
if not input_image:
|
| 100 |
gr.Info("Please upload an image.")
|
|
|
|
| 8 |
import torch
|
| 9 |
from PIL import Image
|
| 10 |
from diffusers import FluxInpaintPipeline
|
|
|
|
| 11 |
from gradio_client import Client, handle_file
|
|
|
|
| 12 |
|
| 13 |
# Set an environment variable
|
| 14 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 15 |
|
| 16 |
MARKDOWN = """
|
| 17 |
# FLUX.1 Inpainting with Text guided Mask🔥
|
| 18 |
+
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for FLUX!
|
| 19 |
+
Special thanks to [Piotr Skalski](https://huggingface.co/SkalskiP) and [Gothos](https://github.com/Gothos)
|
| 20 |
+
for their work on enabling and [showcasing inpainting](https://huggingface.co/spaces/SkalskiP/FLUX.1-inpaint) with the FLUX.
|
| 21 |
"""
|
| 22 |
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 27 |
# Using Gradio Python Client to query EVF-SAM demo, hosted on SPaces, as an endpoint
|
| 28 |
client = Client("ysharma/evf-sam", hf_token=HF_TOKEN)
|
| 29 |
|
|
|
|
| 30 |
pipe = FluxInpaintPipeline.from_pretrained(
|
| 31 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 32 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def evf_sam_mask(image, prompt):
|
|
|
|
| 60 |
images = client.predict(
|
| 61 |
image_np=handle_file(image),
|
| 62 |
prompt=prompt,
|
| 63 |
api_name="/predict")
|
|
|
|
| 64 |
# Open the mask image
|
| 65 |
pil_image = Image.open(images[1])
|
|
|
|
|
|
|
|
|
|
| 66 |
return pil_image
|
| 67 |
|
| 68 |
@spaces.GPU(duration=150)
|
|
|
|
| 80 |
gr.Info("Please enter a text prompt.")
|
| 81 |
return None
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
mask = evf_sam_mask(input_image, input_text)
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
if not input_image:
|
| 86 |
gr.Info("Please upload an image.")
|