Spaces:
Runtime error
Runtime error
| import chainlit as cl | |
| from langchain_community.document_loaders import PyMuPDFLoader | |
| from chainlit.playground.providers import ChatOpenAI | |
| from dotenv import load_dotenv | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| import tiktoken | |
| from langchain.prompts import ChatPromptTemplate | |
| from operator import itemgetter | |
| from langchain_core.runnables import RunnablePassthrough | |
| from langchain import OpenAIEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| from langchain.retrievers import MultiQueryRetriever | |
| from langchain.prompts import ChatPromptTemplate | |
| from langchain.retrievers import MultiQueryRetriever | |
| template = """ | |
| you can only answer questions related to what's in the context. If it's not in the context, then you would reply with | |
| 'Sorry I have no answer to your particular question. I can only answer things regarding: {context}' | |
| Context: | |
| {context} | |
| Question: | |
| {question} | |
| """ | |
| init_settings = { | |
| "model": "gpt-3.5-turbo", | |
| "temperature": 0, | |
| "max_tokens": 500, | |
| "top_p": 1, | |
| "frequency_penalty": 0, | |
| "presence_penalty": 0, | |
| } | |
| embeddings = OpenAIEmbeddings(model="text-embedding-3-small") | |
| load_dotenv() | |
| def tiktoken_len(text): | |
| tokens = tiktoken.encoding_for_model("gpt-3.5-turbo").encode( | |
| text, | |
| ) | |
| return len(tokens) | |
| async def main(): | |
| model = ChatOpenAI(streaming=True) | |
| prompt = ChatPromptTemplate.from_template(template) | |
| nvida_doc = PyMuPDFLoader('../docs/nvidia-document.pdf') | |
| data = nvida_doc.load() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size = 1700, | |
| chunk_overlap = 0, | |
| length_function = tiktoken_len) | |
| nvidia_doc_chunks = text_splitter.split_documents(data) | |
| vector_store = FAISS.from_documents(nvidia_doc_chunks, embedding=embeddings) | |
| retriever = vector_store.as_retriever() | |
| advanced_retriever = MultiQueryRetriever.from_llm(retriever=retriever, llm=model) | |
| runnable = ( | |
| {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | |
| | RunnablePassthrough.assign(context=itemgetter("context")) | |
| | {"response": prompt | model, "context": itemgetter("context")}) | |
| # retrieval_qa_prompt = hub.pull("langchain-ai/retrieval-qa-chat") | |
| # document_chain = create_stuff_documents_chain(model, retrieval_qa_prompt) | |
| # runnable = create_retrieval_chain(advanced_retriever, document_chain) | |
| # cl.user_session.set("settings", init_settings) | |
| # cl.user_session.set("nvidia_doc", data) | |
| cl.user_session.set("runnable", runnable) | |
| async def on_message(message: cl.Message): | |
| # settings = cl.user_session.get("settings") | |
| # nvida_doc = cl.user_session.get("nvidia_doc") | |
| runnable = cl.user_session.get("runnable") | |
| msg = cl.Message(content="") | |
| # async for chunk in runnable.astream( | |
| # {"question": message.content}, | |
| # config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
| # ): | |
| # await msg.stream_token(chunk, True) | |
| # await msg.send() | |
| inputs = {"question": message.content} | |
| result = await runnable.ainvoke(inputs) | |
| msg = cl.Message(content=result["response"].content) | |
| await msg.send() | |