Spaces:
Runtime error
Runtime error
update
Browse files- app.py +40 -40
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
import chainlit as cl
|
|
|
|
| 2 |
from chainlit.playground.providers import ChatOpenAI
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# from langchain.retrievers import MultiQueryRetriever
|
| 16 |
|
| 17 |
template = """
|
| 18 |
you can only answer questions related to what's in the context. If it's not in the context, then you would reply with
|
|
@@ -34,43 +34,43 @@ init_settings = {
|
|
| 34 |
"presence_penalty": 0,
|
| 35 |
}
|
| 36 |
|
| 37 |
-
|
| 38 |
|
| 39 |
|
| 40 |
load_dotenv()
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
|
| 49 |
@cl.on_chat_start
|
| 50 |
async def main():
|
| 51 |
model = ChatOpenAI(streaming=True)
|
| 52 |
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
# retrieval_qa_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
|
| 76 |
# document_chain = create_stuff_documents_chain(model, retrieval_qa_prompt)
|
|
@@ -79,7 +79,7 @@ async def main():
|
|
| 79 |
# cl.user_session.set("settings", init_settings)
|
| 80 |
# cl.user_session.set("nvidia_doc", data)
|
| 81 |
|
| 82 |
-
|
| 83 |
|
| 84 |
|
| 85 |
|
|
@@ -87,9 +87,9 @@ async def main():
|
|
| 87 |
async def on_message(message: cl.Message):
|
| 88 |
# settings = cl.user_session.get("settings")
|
| 89 |
# nvida_doc = cl.user_session.get("nvidia_doc")
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
|
| 95 |
# async for chunk in runnable.astream(
|
|
@@ -100,10 +100,10 @@ async def on_message(message: cl.Message):
|
|
| 100 |
|
| 101 |
# await msg.send()
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
|
| 108 |
|
| 109 |
|
|
|
|
| 1 |
import chainlit as cl
|
| 2 |
+
from langchain_core.document_loaders import PyMuPDFLoader
|
| 3 |
from chainlit.playground.providers import ChatOpenAI
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
import tiktoken
|
| 7 |
+
from langchain.prompts import ChatPromptTemplate
|
| 8 |
+
from operator import itemgetter
|
| 9 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 10 |
+
from langchain import ChatOpenAI, OpenAIEmbeddings
|
| 11 |
+
from langchain_community.vectorstores import FAISS
|
| 12 |
+
from langchain.retrievers import MultiQueryRetriever
|
| 13 |
+
|
| 14 |
+
from langchain.prompts import ChatPromptTemplate
|
| 15 |
+
from langchain.retrievers import MultiQueryRetriever
|
|
|
|
| 16 |
|
| 17 |
template = """
|
| 18 |
you can only answer questions related to what's in the context. If it's not in the context, then you would reply with
|
|
|
|
| 34 |
"presence_penalty": 0,
|
| 35 |
}
|
| 36 |
|
| 37 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
| 38 |
|
| 39 |
|
| 40 |
load_dotenv()
|
| 41 |
|
| 42 |
+
def tiktoken_len(text):
|
| 43 |
+
tokens = tiktoken.encoding_for_model("gpt-3.5-turbo").encode(
|
| 44 |
+
text,
|
| 45 |
+
)
|
| 46 |
+
return len(tokens)
|
| 47 |
|
| 48 |
|
| 49 |
@cl.on_chat_start
|
| 50 |
async def main():
|
| 51 |
model = ChatOpenAI(streaming=True)
|
| 52 |
|
| 53 |
+
prompt = ChatPromptTemplate.from_template(template)
|
| 54 |
|
| 55 |
+
nvida_doc = PyMuPDFLoader('../docs/nvidia-document.pdf')
|
| 56 |
+
data = nvida_doc.load()
|
| 57 |
|
| 58 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 59 |
+
chunk_size = 1700,
|
| 60 |
+
chunk_overlap = 0,
|
| 61 |
+
length_function = tiktoken_len)
|
| 62 |
|
| 63 |
+
nvidia_doc_chunks = text_splitter.split_documents(data)
|
| 64 |
|
| 65 |
+
vector_store = FAISS.from_documents(nvidia_doc_chunks, embedding=embeddings)
|
| 66 |
|
| 67 |
+
retriever = vector_store.as_retriever()
|
| 68 |
+
advanced_retriever = MultiQueryRetriever.from_llm(retriever=retriever, llm=model)
|
| 69 |
|
| 70 |
+
runnable = (
|
| 71 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
| 72 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
| 73 |
+
| {"response": prompt | model, "context": itemgetter("context")})
|
| 74 |
|
| 75 |
# retrieval_qa_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
|
| 76 |
# document_chain = create_stuff_documents_chain(model, retrieval_qa_prompt)
|
|
|
|
| 79 |
# cl.user_session.set("settings", init_settings)
|
| 80 |
# cl.user_session.set("nvidia_doc", data)
|
| 81 |
|
| 82 |
+
cl.user_session.set("runnable", runnable)
|
| 83 |
|
| 84 |
|
| 85 |
|
|
|
|
| 87 |
async def on_message(message: cl.Message):
|
| 88 |
# settings = cl.user_session.get("settings")
|
| 89 |
# nvida_doc = cl.user_session.get("nvidia_doc")
|
| 90 |
+
runnable = cl.user_session.get("runnable")
|
| 91 |
|
| 92 |
+
msg = cl.Message(content="")
|
| 93 |
|
| 94 |
|
| 95 |
# async for chunk in runnable.astream(
|
|
|
|
| 100 |
|
| 101 |
# await msg.send()
|
| 102 |
|
| 103 |
+
inputs = {"question": message.content}
|
| 104 |
+
result = await runnable.ainvoke(inputs)
|
| 105 |
+
msg = cl.Message(content=result["response"].content)
|
| 106 |
+
await msg.send()
|
| 107 |
|
| 108 |
|
| 109 |
|
requirements.txt
CHANGED
|
@@ -5,4 +5,4 @@ tiktoken==0.5.1
|
|
| 5 |
python-dotenv==1.0.0
|
| 6 |
langchain
|
| 7 |
langchain_openai
|
| 8 |
-
|
|
|
|
| 5 |
python-dotenv==1.0.0
|
| 6 |
langchain
|
| 7 |
langchain_openai
|
| 8 |
+
langchain-community==0.0.28
|