Spaces:
Sleeping
Sleeping
Krish Patel
commited on
Commit
·
1c838ea
1
Parent(s):
98e05ff
Enhanced the knowledge graph
Browse files- __pycache__/final.cpython-312.pyc +0 -0
- app.py +243 -16
__pycache__/final.cpython-312.pyc
ADDED
|
Binary file (9.75 kB). View file
|
|
|
app.py
CHANGED
|
@@ -32,6 +32,92 @@ def initialize_models():
|
|
| 32 |
class NewsInput(BaseModel):
|
| 33 |
text: str
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
|
| 36 |
kg_builder = KnowledgeGraphBuilder()
|
| 37 |
|
|
@@ -42,18 +128,29 @@ def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
|
|
| 42 |
# Update knowledge graph
|
| 43 |
kg_builder.update_knowledge_graph(text, not is_fake, nlp)
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# Create a new graph with selected edges
|
| 50 |
selected_graph = nx.DiGraph()
|
| 51 |
selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
|
| 52 |
-
selected_graph.add_edges_from(
|
| 53 |
|
| 54 |
pos = nx.spring_layout(selected_graph)
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
x=[], y=[],
|
| 58 |
line=dict(
|
| 59 |
width=2,
|
|
@@ -63,14 +160,136 @@ def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
|
|
| 63 |
mode='lines'
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
x=[], y=[],
|
| 71 |
line=dict(
|
| 72 |
-
width=2,
|
| 73 |
-
color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
),
|
| 75 |
hoverinfo='none',
|
| 76 |
mode='lines'
|
|
@@ -89,22 +308,30 @@ def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
|
|
| 89 |
text=[]
|
| 90 |
)
|
| 91 |
|
| 92 |
-
# Add edges
|
| 93 |
-
for edge in
|
| 94 |
x0, y0 = pos[edge[0]]
|
| 95 |
x1, y1 = pos[edge[1]]
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# Add nodes
|
| 100 |
-
for node in
|
| 101 |
x, y = pos[node]
|
| 102 |
node_trace['x'] += (x,)
|
| 103 |
node_trace['y'] += (y,)
|
| 104 |
node_trace['text'] += (node,)
|
| 105 |
|
| 106 |
fig = go.Figure(
|
| 107 |
-
data=[
|
| 108 |
layout=go.Layout(
|
| 109 |
showlegend=False,
|
| 110 |
hovermode='closest',
|
|
|
|
| 32 |
class NewsInput(BaseModel):
|
| 33 |
text: str
|
| 34 |
|
| 35 |
+
# def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
|
| 36 |
+
# kg_builder = KnowledgeGraphBuilder()
|
| 37 |
+
|
| 38 |
+
# # Get prediction
|
| 39 |
+
# prediction, _ = predict_with_model(text, tokenizer, model)
|
| 40 |
+
# is_fake = prediction == "FAKE"
|
| 41 |
+
|
| 42 |
+
# # Update knowledge graph
|
| 43 |
+
# kg_builder.update_knowledge_graph(text, not is_fake, nlp)
|
| 44 |
+
|
| 45 |
+
# # Randomly select subset of edges (e.g. 10% of edges)
|
| 46 |
+
# edges = list(kg_builder.knowledge_graph.edges())
|
| 47 |
+
# selected_edges = random.sample(edges, k=int(len(edges) * 0.3))
|
| 48 |
+
|
| 49 |
+
# # Create a new graph with selected edges
|
| 50 |
+
# selected_graph = nx.DiGraph()
|
| 51 |
+
# selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
|
| 52 |
+
# selected_graph.add_edges_from(selected_edges)
|
| 53 |
+
|
| 54 |
+
# pos = nx.spring_layout(selected_graph)
|
| 55 |
+
|
| 56 |
+
# edge_trace = go.Scatter(
|
| 57 |
+
# x=[], y=[],
|
| 58 |
+
# line=dict(
|
| 59 |
+
# width=2,
|
| 60 |
+
# color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
|
| 61 |
+
# ),
|
| 62 |
+
# hoverinfo='none',
|
| 63 |
+
# mode='lines'
|
| 64 |
+
# )
|
| 65 |
+
|
| 66 |
+
# # Create visualization
|
| 67 |
+
# pos = nx.spring_layout(kg_builder.knowledge_graph)
|
| 68 |
+
|
| 69 |
+
# edge_trace = go.Scatter(
|
| 70 |
+
# x=[], y=[],
|
| 71 |
+
# line=dict(
|
| 72 |
+
# width=2,
|
| 73 |
+
# color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)'
|
| 74 |
+
# ),
|
| 75 |
+
# hoverinfo='none',
|
| 76 |
+
# mode='lines'
|
| 77 |
+
# )
|
| 78 |
+
|
| 79 |
+
# node_trace = go.Scatter(
|
| 80 |
+
# x=[], y=[],
|
| 81 |
+
# mode='markers+text',
|
| 82 |
+
# hoverinfo='text',
|
| 83 |
+
# textposition='top center',
|
| 84 |
+
# marker=dict(
|
| 85 |
+
# size=15,
|
| 86 |
+
# color='white',
|
| 87 |
+
# line=dict(width=2, color='black')
|
| 88 |
+
# ),
|
| 89 |
+
# text=[]
|
| 90 |
+
# )
|
| 91 |
+
|
| 92 |
+
# # Add edges
|
| 93 |
+
# for edge in selected_graph.edges():
|
| 94 |
+
# x0, y0 = pos[edge[0]]
|
| 95 |
+
# x1, y1 = pos[edge[1]]
|
| 96 |
+
# edge_trace['x'] += (x0, x1, None)
|
| 97 |
+
# edge_trace['y'] += (y0, y1, None)
|
| 98 |
+
|
| 99 |
+
# # Add nodes
|
| 100 |
+
# for node in kg_builder.knowledge_graph.nodes():
|
| 101 |
+
# x, y = pos[node]
|
| 102 |
+
# node_trace['x'] += (x,)
|
| 103 |
+
# node_trace['y'] += (y,)
|
| 104 |
+
# node_trace['text'] += (node,)
|
| 105 |
+
|
| 106 |
+
# fig = go.Figure(
|
| 107 |
+
# data=[edge_trace, node_trace],
|
| 108 |
+
# layout=go.Layout(
|
| 109 |
+
# showlegend=False,
|
| 110 |
+
# hovermode='closest',
|
| 111 |
+
# margin=dict(b=0,l=0,r=0,t=0),
|
| 112 |
+
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 113 |
+
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 114 |
+
# plot_bgcolor='rgba(0,0,0,0)',
|
| 115 |
+
# paper_bgcolor='rgba(0,0,0,0)'
|
| 116 |
+
# )
|
| 117 |
+
# )
|
| 118 |
+
|
| 119 |
+
# return fig
|
| 120 |
+
|
| 121 |
def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
|
| 122 |
kg_builder = KnowledgeGraphBuilder()
|
| 123 |
|
|
|
|
| 128 |
# Update knowledge graph
|
| 129 |
kg_builder.update_knowledge_graph(text, not is_fake, nlp)
|
| 130 |
|
| 131 |
+
# Get all edges from the knowledge graph
|
| 132 |
+
all_edges = list(kg_builder.knowledge_graph.edges())
|
| 133 |
+
total_edges = len(all_edges)
|
| 134 |
+
|
| 135 |
+
# Select only 50% of edges to display
|
| 136 |
+
display_edge_count = int(total_edges * 0.5)
|
| 137 |
+
display_edges = random.sample(all_edges, k=min(display_edge_count, total_edges))
|
| 138 |
+
|
| 139 |
+
# Determine how many edges should be the opposite color (15% of displayed edges)
|
| 140 |
+
opposite_color_count = int(len(display_edges) * 0.15)
|
| 141 |
+
|
| 142 |
+
# Randomly select which edges will have the opposite color
|
| 143 |
+
opposite_color_edges = set(random.sample(display_edges, k=opposite_color_count))
|
| 144 |
|
| 145 |
# Create a new graph with selected edges
|
| 146 |
selected_graph = nx.DiGraph()
|
| 147 |
selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
|
| 148 |
+
selected_graph.add_edges_from(display_edges)
|
| 149 |
|
| 150 |
pos = nx.spring_layout(selected_graph)
|
| 151 |
|
| 152 |
+
# Create two edge traces - one for dominant color, one for opposite color
|
| 153 |
+
dominant_edge_trace = go.Scatter(
|
| 154 |
x=[], y=[],
|
| 155 |
line=dict(
|
| 156 |
width=2,
|
|
|
|
| 160 |
mode='lines'
|
| 161 |
)
|
| 162 |
|
| 163 |
+
opposite_edge_trace = go.Scatter(
|
| 164 |
+
x=[], y=[],
|
| 165 |
+
line=dict(
|
| 166 |
+
width=2,
|
| 167 |
+
color='rgba(0,255,0,0.7)' if is_fake else 'rgba(255,0,0,0.7)'
|
| 168 |
+
),
|
| 169 |
+
hoverinfo='none',
|
| 170 |
+
mode='lines'
|
| 171 |
+
)
|
| 172 |
|
| 173 |
+
node_trace = go.Scatter(
|
| 174 |
+
x=[], y=[],
|
| 175 |
+
mode='markers+text',
|
| 176 |
+
hoverinfo='text',
|
| 177 |
+
textposition='top center',
|
| 178 |
+
marker=dict(
|
| 179 |
+
size=15,
|
| 180 |
+
color='white',
|
| 181 |
+
line=dict(width=2, color='black')
|
| 182 |
+
),
|
| 183 |
+
text=[]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Add edges with appropriate colors
|
| 187 |
+
for edge in display_edges:
|
| 188 |
+
x0, y0 = pos[edge[0]]
|
| 189 |
+
x1, y1 = pos[edge[1]]
|
| 190 |
+
|
| 191 |
+
if edge in opposite_color_edges:
|
| 192 |
+
opposite_edge_trace['x'] += (x0, x1, None)
|
| 193 |
+
opposite_edge_trace['y'] += (y0, y1, None)
|
| 194 |
+
else:
|
| 195 |
+
dominant_edge_trace['x'] += (x0, x1, None)
|
| 196 |
+
dominant_edge_trace['y'] += (y0, y1, None)
|
| 197 |
+
|
| 198 |
+
# Add nodes
|
| 199 |
+
for node in selected_graph.nodes():
|
| 200 |
+
x, y = pos[node]
|
| 201 |
+
node_trace['x'] += (x,)
|
| 202 |
+
node_trace['y'] += (y,)
|
| 203 |
+
node_trace['text'] += (node,)
|
| 204 |
+
|
| 205 |
+
fig = go.Figure(
|
| 206 |
+
data=[dominant_edge_trace, opposite_edge_trace, node_trace],
|
| 207 |
+
layout=go.Layout(
|
| 208 |
+
showlegend=False,
|
| 209 |
+
hovermode='closest',
|
| 210 |
+
margin=dict(b=0,l=0,r=0,t=0),
|
| 211 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 212 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 213 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
| 214 |
+
paper_bgcolor='rgba(0,0,0,0)'
|
| 215 |
+
)
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
return fig
|
| 219 |
+
|
| 220 |
+
def generate_knowledge_graph_viz(text, nlp, tokenizer, model):
|
| 221 |
+
kg_builder = KnowledgeGraphBuilder()
|
| 222 |
+
|
| 223 |
+
# Get prediction
|
| 224 |
+
prediction, _ = predict_with_model(text, tokenizer, model)
|
| 225 |
+
is_fake = prediction == "FAKE"
|
| 226 |
+
|
| 227 |
+
# Update knowledge graph
|
| 228 |
+
kg_builder.update_knowledge_graph(text, not is_fake, nlp)
|
| 229 |
+
|
| 230 |
+
# Get all edges from the knowledge graph
|
| 231 |
+
all_edges = list(kg_builder.knowledge_graph.edges())
|
| 232 |
+
total_edges = len(all_edges)
|
| 233 |
+
|
| 234 |
+
# Select only 60% of edges to display (0.3 + 0.15 + 0.15)
|
| 235 |
+
display_edge_count = int(total_edges * 0.6)
|
| 236 |
+
display_edges = random.sample(all_edges, k=min(display_edge_count, total_edges))
|
| 237 |
+
|
| 238 |
+
# Determine edge counts for each color
|
| 239 |
+
primary_color_count = int(total_edges * 0.3) # 30% primary color (green for real, red for fake)
|
| 240 |
+
opposite_color_count = int(total_edges * 0.15) # 15% opposite color
|
| 241 |
+
orange_color_count = int(total_edges * 0.15) # 15% orange
|
| 242 |
+
|
| 243 |
+
# Ensure we don't exceed the number of display edges
|
| 244 |
+
total_colored = primary_color_count + opposite_color_count + orange_color_count
|
| 245 |
+
if total_colored > len(display_edges):
|
| 246 |
+
ratio = len(display_edges) / total_colored
|
| 247 |
+
primary_color_count = int(primary_color_count * ratio)
|
| 248 |
+
opposite_color_count = int(opposite_color_count * ratio)
|
| 249 |
+
orange_color_count = int(orange_color_count * ratio)
|
| 250 |
+
|
| 251 |
+
# Shuffle display edges to ensure random distribution
|
| 252 |
+
random.shuffle(display_edges)
|
| 253 |
+
|
| 254 |
+
# Assign colors to edges
|
| 255 |
+
primary_color_edges = set(display_edges[:primary_color_count])
|
| 256 |
+
opposite_color_edges = set(display_edges[primary_color_count:primary_color_count+opposite_color_count])
|
| 257 |
+
orange_color_edges = set(display_edges[primary_color_count+opposite_color_count:
|
| 258 |
+
primary_color_count+opposite_color_count+orange_color_count])
|
| 259 |
+
|
| 260 |
+
# Create a new graph with selected edges
|
| 261 |
+
selected_graph = nx.DiGraph()
|
| 262 |
+
selected_graph.add_nodes_from(kg_builder.knowledge_graph.nodes(data=True))
|
| 263 |
+
selected_graph.add_edges_from(display_edges)
|
| 264 |
+
|
| 265 |
+
pos = nx.spring_layout(selected_graph)
|
| 266 |
+
|
| 267 |
+
# Create three edge traces - primary, opposite, and orange
|
| 268 |
+
primary_edge_trace = go.Scatter(
|
| 269 |
x=[], y=[],
|
| 270 |
line=dict(
|
| 271 |
+
width=2,
|
| 272 |
+
color='rgba(255,0,0,0.7)' if is_fake else 'rgba(0,255,0,0.7)' # Red if fake, green if real
|
| 273 |
+
),
|
| 274 |
+
hoverinfo='none',
|
| 275 |
+
mode='lines'
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
opposite_edge_trace = go.Scatter(
|
| 279 |
+
x=[], y=[],
|
| 280 |
+
line=dict(
|
| 281 |
+
width=2,
|
| 282 |
+
color='rgba(0,255,0,0.7)' if is_fake else 'rgba(255,0,0,0.7)' # Green if fake, red if real
|
| 283 |
+
),
|
| 284 |
+
hoverinfo='none',
|
| 285 |
+
mode='lines'
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
orange_edge_trace = go.Scatter(
|
| 289 |
+
x=[], y=[],
|
| 290 |
+
line=dict(
|
| 291 |
+
width=2,
|
| 292 |
+
color='rgba(255,165,0,0.7)' # Orange
|
| 293 |
),
|
| 294 |
hoverinfo='none',
|
| 295 |
mode='lines'
|
|
|
|
| 308 |
text=[]
|
| 309 |
)
|
| 310 |
|
| 311 |
+
# Add edges with appropriate colors
|
| 312 |
+
for edge in display_edges:
|
| 313 |
x0, y0 = pos[edge[0]]
|
| 314 |
x1, y1 = pos[edge[1]]
|
| 315 |
+
|
| 316 |
+
if edge in primary_color_edges:
|
| 317 |
+
primary_edge_trace['x'] += (x0, x1, None)
|
| 318 |
+
primary_edge_trace['y'] += (y0, y1, None)
|
| 319 |
+
elif edge in opposite_color_edges:
|
| 320 |
+
opposite_edge_trace['x'] += (x0, x1, None)
|
| 321 |
+
opposite_edge_trace['y'] += (y0, y1, None)
|
| 322 |
+
elif edge in orange_color_edges:
|
| 323 |
+
orange_edge_trace['x'] += (x0, x1, None)
|
| 324 |
+
orange_edge_trace['y'] += (y0, y1, None)
|
| 325 |
|
| 326 |
# Add nodes
|
| 327 |
+
for node in selected_graph.nodes():
|
| 328 |
x, y = pos[node]
|
| 329 |
node_trace['x'] += (x,)
|
| 330 |
node_trace['y'] += (y,)
|
| 331 |
node_trace['text'] += (node,)
|
| 332 |
|
| 333 |
fig = go.Figure(
|
| 334 |
+
data=[primary_edge_trace, opposite_edge_trace, orange_edge_trace, node_trace],
|
| 335 |
layout=go.Layout(
|
| 336 |
showlegend=False,
|
| 337 |
hovermode='closest',
|