Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -40,12 +40,6 @@ if not is_spaces:
|
|
| 40 |
|
| 41 |
MODEL_PATH = os.getenv("MODEL_PATH", "Jiaqi-hkust/Robust-R1-RL")
|
| 42 |
|
| 43 |
-
def gpu_decorator(func):
|
| 44 |
-
"""条件应用 GPU 装饰器"""
|
| 45 |
-
if spaces_available and GPU is not None:
|
| 46 |
-
return GPU(func)
|
| 47 |
-
return func
|
| 48 |
-
|
| 49 |
print(f"==========================================")
|
| 50 |
print(f"Initializing application...")
|
| 51 |
print(f"==========================================")
|
|
@@ -55,27 +49,38 @@ class ModelHandler:
|
|
| 55 |
self.model_path = model_path
|
| 56 |
self.model = None
|
| 57 |
self.processor = None
|
| 58 |
-
|
| 59 |
|
| 60 |
def _load_model(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
try:
|
| 62 |
print(f"⏳ Loading model weights, this may take a few minutes...")
|
| 63 |
|
| 64 |
self.processor = AutoProcessor.from_pretrained(self.model_path)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 75 |
self.model_path,
|
| 76 |
-
torch_dtype=
|
| 77 |
device_map="auto",
|
| 78 |
-
# attn_implementation="flash_attention_2" if use_flash_attention else "eager",
|
| 79 |
attn_implementation="sdpa",
|
| 80 |
trust_remote_code=True
|
| 81 |
)
|
|
@@ -85,6 +90,10 @@ class ModelHandler:
|
|
| 85 |
raise e
|
| 86 |
|
| 87 |
def predict(self, message_dict, history, temperature, max_tokens):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
text = message_dict.get("text", "")
|
| 89 |
files = message_dict.get("files", [])
|
| 90 |
|
|
|
|
| 40 |
|
| 41 |
MODEL_PATH = os.getenv("MODEL_PATH", "Jiaqi-hkust/Robust-R1-RL")
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
print(f"==========================================")
|
| 44 |
print(f"Initializing application...")
|
| 45 |
print(f"==========================================")
|
|
|
|
| 49 |
self.model_path = model_path
|
| 50 |
self.model = None
|
| 51 |
self.processor = None
|
| 52 |
+
# 不在 __init__ 中加载模型,延迟到实际使用时
|
| 53 |
|
| 54 |
def _load_model(self):
|
| 55 |
+
"""延迟加载模型,在 GPU 装饰器函数内部调用"""
|
| 56 |
+
if self.model is not None:
|
| 57 |
+
return # 已经加载过了
|
| 58 |
+
|
| 59 |
try:
|
| 60 |
print(f"⏳ Loading model weights, this may take a few minutes...")
|
| 61 |
|
| 62 |
self.processor = AutoProcessor.from_pretrained(self.model_path)
|
| 63 |
|
| 64 |
+
# 在 ZeroGPU 环境中,避免过早检查 CUDA
|
| 65 |
+
# 让 device_map="auto" 自动处理设备分配
|
| 66 |
+
try:
|
| 67 |
+
cuda_available = torch.cuda.is_available()
|
| 68 |
+
if cuda_available:
|
| 69 |
+
device_capability = torch.cuda.get_device_capability()
|
| 70 |
+
print(f"🔧 CUDA available, device capability: {device_capability}")
|
| 71 |
+
torch_dtype = torch.bfloat16
|
| 72 |
+
else:
|
| 73 |
+
print(f"🔧 Using CPU or non-CUDA device")
|
| 74 |
+
torch_dtype = torch.float32
|
| 75 |
+
except RuntimeError:
|
| 76 |
+
# ZeroGPU 环境中可能暂时无法检查 CUDA
|
| 77 |
+
print(f"🔧 CUDA check skipped (ZeroGPU environment)")
|
| 78 |
+
torch_dtype = torch.bfloat16 # 假设有 GPU,让 device_map 处理
|
| 79 |
|
| 80 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 81 |
self.model_path,
|
| 82 |
+
torch_dtype=torch_dtype,
|
| 83 |
device_map="auto",
|
|
|
|
| 84 |
attn_implementation="sdpa",
|
| 85 |
trust_remote_code=True
|
| 86 |
)
|
|
|
|
| 90 |
raise e
|
| 91 |
|
| 92 |
def predict(self, message_dict, history, temperature, max_tokens):
|
| 93 |
+
# 确保模型已加载
|
| 94 |
+
if self.model is None:
|
| 95 |
+
self._load_model()
|
| 96 |
+
|
| 97 |
text = message_dict.get("text", "")
|
| 98 |
files = message_dict.get("files", [])
|
| 99 |
|