Spaces:
Running
on
Zero
Running
on
Zero
Avijit Ghosh
commited on
Commit
·
31a0f6f
1
Parent(s):
f56644b
add dropdown
Browse files
app.py
CHANGED
|
@@ -1,70 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
|
| 4 |
-
from diffusers import DiffusionPipeline
|
| 5 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 6 |
from pathlib import Path
|
| 7 |
-
import
|
| 8 |
-
import
|
| 9 |
-
import io
|
| 10 |
-
import os
|
| 11 |
from PIL import Image
|
| 12 |
-
import spaces
|
| 13 |
-
|
| 14 |
import matplotlib.pyplot as plt
|
| 15 |
-
import numpy as np
|
| 16 |
from matplotlib.colors import hex2color
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# Fetch models from Hugging Face Hub
|
| 20 |
-
models = list_models(task="text-to-image")
|
| 21 |
-
## Step 1: Filter the models
|
| 22 |
-
filtered_models = [model for model in models if model.library_name == "diffusers"]
|
| 23 |
-
|
| 24 |
-
# Step 2: Sort the filtered models by downloads in descending order
|
| 25 |
-
sorted_models = sorted(filtered_models, key=lambda x: x.downloads, reverse=True)
|
| 26 |
-
|
| 27 |
-
# Step 3: Select the top 5 models with only one model per company
|
| 28 |
-
top_models = []
|
| 29 |
-
companies_seen = set()
|
| 30 |
-
|
| 31 |
-
for model in sorted_models:
|
| 32 |
-
company_name = model.id.split('/')[0] # Assuming the company name is the first part of the model id
|
| 33 |
-
if company_name not in companies_seen:
|
| 34 |
-
top_models.append(model)
|
| 35 |
-
companies_seen.add(company_name)
|
| 36 |
-
if len(top_models) == 5:
|
| 37 |
-
break
|
| 38 |
-
|
| 39 |
-
# Get the ids of the top models
|
| 40 |
-
model_names = [model.id for model in top_models]
|
| 41 |
-
|
| 42 |
-
print(model_names)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
@spaces.GPU
|
| 53 |
def getimgen(prompt):
|
| 54 |
-
|
| 55 |
-
return pipeline_text2image(
|
| 56 |
-
prompt=prompt,
|
| 57 |
-
guidance_scale=0.0,
|
| 58 |
-
num_inference_steps=2
|
| 59 |
-
).images[0]
|
| 60 |
|
| 61 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 62 |
-
blip_model = BlipForConditionalGeneration.from_pretrained(
|
| 63 |
-
"Salesforce/blip-image-captioning-large",
|
| 64 |
-
torch_dtype=torch.float16
|
| 65 |
-
).to("cuda")
|
| 66 |
|
| 67 |
-
@spaces.GPU
|
| 68 |
def blip_caption_image(image, prefix):
|
| 69 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
| 70 |
out = blip_model.generate(**inputs)
|
|
@@ -80,69 +83,37 @@ def genderfromcaption(caption):
|
|
| 80 |
|
| 81 |
def genderplot(genlist):
|
| 82 |
order = ["Man", "Woman", "Unsure"]
|
| 83 |
-
|
| 84 |
-
# Sort the list based on the order of keys
|
| 85 |
words = sorted(genlist, key=lambda x: order.index(x))
|
| 86 |
-
|
| 87 |
-
# Define colors for each category
|
| 88 |
colors = {"Man": "lightgreen", "Woman": "darkgreen", "Unsure": "lightgrey"}
|
| 89 |
-
|
| 90 |
-
# Map each word to its corresponding color
|
| 91 |
word_colors = [colors[word] for word in words]
|
| 92 |
-
|
| 93 |
-
# Plot the colors in a grid with reduced spacing
|
| 94 |
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
| 95 |
-
|
| 96 |
-
# Adjust spacing between subplots
|
| 97 |
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
| 98 |
-
|
| 99 |
for i, ax in enumerate(axes.flat):
|
| 100 |
ax.set_axis_off()
|
| 101 |
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=word_colors[i]))
|
| 102 |
-
|
| 103 |
return fig
|
| 104 |
|
| 105 |
def skintoneplot(hex_codes):
|
| 106 |
-
|
| 107 |
rgb_values = [hex2color(hex_code) for hex_code in hex_codes]
|
| 108 |
-
|
| 109 |
-
# Calculate luminance for each color
|
| 110 |
luminance_values = [0.299 * r + 0.587 * g + 0.114 * b for r, g, b in rgb_values]
|
| 111 |
-
|
| 112 |
-
# Sort hex codes based on luminance in descending order (dark to light)
|
| 113 |
sorted_hex_codes = [code for _, code in sorted(zip(luminance_values, hex_codes), reverse=True)]
|
| 114 |
-
|
| 115 |
-
# Plot the colors in a grid with reduced spacing
|
| 116 |
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
| 117 |
-
|
| 118 |
-
# Adjust spacing between subplots
|
| 119 |
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
| 120 |
-
|
| 121 |
for i, ax in enumerate(axes.flat):
|
| 122 |
ax.set_axis_off()
|
| 123 |
-
|
| 124 |
-
|
| 125 |
return fig
|
| 126 |
|
| 127 |
-
@spaces.GPU
|
| 128 |
def generate_images_plots(prompt, model_name):
|
| 129 |
-
print(model_name)
|
| 130 |
-
# Update the pipeline to use the selected model
|
| 131 |
global pipeline_text2image
|
| 132 |
-
pipeline_text2image =
|
| 133 |
-
model_name
|
| 134 |
-
)
|
| 135 |
-
pipeline_text2image = pipeline_text2image.to("cuda")
|
| 136 |
-
|
| 137 |
foldername = "temp"
|
| 138 |
-
# Generate 10 images
|
| 139 |
-
images = [getimgen(prompt) for _ in range(10)]
|
| 140 |
-
|
| 141 |
Path(foldername).mkdir(parents=True, exist_ok=True)
|
| 142 |
-
|
| 143 |
genders = []
|
| 144 |
skintones = []
|
| 145 |
-
|
| 146 |
for image, i in zip(images, range(10)):
|
| 147 |
prompt_prefix = "photo of a "
|
| 148 |
caption = blip_caption_image(image, prefix=prompt_prefix)
|
|
@@ -153,26 +124,35 @@ def generate_images_plots(prompt, model_name):
|
|
| 153 |
skintones.append(tone)
|
| 154 |
except:
|
| 155 |
skintones.append(None)
|
| 156 |
-
|
| 157 |
genders.append(genderfromcaption(caption))
|
| 158 |
-
|
| 159 |
-
print(genders, skintones)
|
| 160 |
-
|
| 161 |
return images, skintoneplot(skintones), genderplot(genders)
|
| 162 |
|
| 163 |
-
with gr.Blocks(title
|
| 164 |
-
|
| 165 |
gr.Markdown("# Skin Tone and Gender bias in Text to Image Models")
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
prompt = gr.Textbox(label="Enter the Prompt")
|
| 169 |
-
gallery = gr.Gallery(
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
btn = gr.Button("Generate images", scale=0)
|
| 172 |
with gr.Row(equal_height=True):
|
| 173 |
skinplot = gr.Plot(label="Skin Tone")
|
| 174 |
genplot = gr.Plot(label="Gender")
|
| 175 |
-
|
| 176 |
btn.click(generate_images_plots, inputs=[prompt, model_dropdown], outputs=[gallery, skinplot, genplot])
|
| 177 |
|
| 178 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import DiffusionPipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, EulerDiscreteScheduler, UNet2DConditionModel
|
|
|
|
| 4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 5 |
from pathlib import Path
|
| 6 |
+
from safetensors.torch import load_file
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 8 |
from PIL import Image
|
|
|
|
|
|
|
| 9 |
import matplotlib.pyplot as plt
|
|
|
|
| 10 |
from matplotlib.colors import hex2color
|
| 11 |
+
import stone
|
| 12 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# Define model initialization functions
|
| 15 |
+
def load_model(model_name):
|
| 16 |
+
if model_name == "stabilityai/sdxl-turbo":
|
| 17 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 18 |
+
model_name,
|
| 19 |
+
torch_dtype=torch.float16,
|
| 20 |
+
variant="fp16"
|
| 21 |
+
).to("cuda")
|
| 22 |
+
elif model_name == "runwayml/stable-diffusion-v1-5":
|
| 23 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 24 |
+
model_name,
|
| 25 |
+
torch_dtype=torch.float16
|
| 26 |
+
).to("cuda")
|
| 27 |
+
elif model_name == "ByteDance/SDXL-Lightning":
|
| 28 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 29 |
+
ckpt = "sdxl_lightning_4step_unet.safetensors"
|
| 30 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
| 31 |
+
unet.load_state_dict(load_file(hf_hub_download(model_name, ckpt), device="cuda"))
|
| 32 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
| 33 |
+
base,
|
| 34 |
+
unet=unet,
|
| 35 |
+
torch_dtype=torch.float16,
|
| 36 |
+
variant="fp16"
|
| 37 |
+
).to("cuda")
|
| 38 |
+
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
|
| 39 |
+
elif model_name == "segmind/SSD-1B":
|
| 40 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
| 41 |
+
model_name,
|
| 42 |
+
torch_dtype=torch.float16,
|
| 43 |
+
use_safetensors=True,
|
| 44 |
+
variant="fp16"
|
| 45 |
+
).to("cuda")
|
| 46 |
+
else:
|
| 47 |
+
raise ValueError("Unknown model name")
|
| 48 |
+
return pipeline
|
| 49 |
+
|
| 50 |
+
choices=[
|
| 51 |
+
"stabilityai/sdxl-turbo",
|
| 52 |
+
"runwayml/stable-diffusion-v1-5",
|
| 53 |
+
"ByteDance/SDXL-Lightning",
|
| 54 |
+
"segmind/SSD-1B"
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
for model_name in choices:
|
| 58 |
+
load_model(model_name)
|
| 59 |
+
|
| 60 |
+
# Initialize the default model
|
| 61 |
+
default_model = "stabilityai/sdxl-turbo"
|
| 62 |
+
|
| 63 |
+
pipeline_text2image = load_model(default_model)
|
| 64 |
|
|
|
|
| 65 |
def getimgen(prompt):
|
| 66 |
+
return pipeline_text2image(prompt=prompt, guidance_scale=0.0, num_inference_steps=2).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 69 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
|
|
|
|
|
|
|
|
|
| 70 |
|
|
|
|
| 71 |
def blip_caption_image(image, prefix):
|
| 72 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
| 73 |
out = blip_model.generate(**inputs)
|
|
|
|
| 83 |
|
| 84 |
def genderplot(genlist):
|
| 85 |
order = ["Man", "Woman", "Unsure"]
|
|
|
|
|
|
|
| 86 |
words = sorted(genlist, key=lambda x: order.index(x))
|
|
|
|
|
|
|
| 87 |
colors = {"Man": "lightgreen", "Woman": "darkgreen", "Unsure": "lightgrey"}
|
|
|
|
|
|
|
| 88 |
word_colors = [colors[word] for word in words]
|
|
|
|
|
|
|
| 89 |
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
|
|
|
|
|
|
| 90 |
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
|
|
|
| 91 |
for i, ax in enumerate(axes.flat):
|
| 92 |
ax.set_axis_off()
|
| 93 |
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=word_colors[i]))
|
|
|
|
| 94 |
return fig
|
| 95 |
|
| 96 |
def skintoneplot(hex_codes):
|
| 97 |
+
hex_codes = [code for code in hex_codes if code is not None]
|
| 98 |
rgb_values = [hex2color(hex_code) for hex_code in hex_codes]
|
|
|
|
|
|
|
| 99 |
luminance_values = [0.299 * r + 0.587 * g + 0.114 * b for r, g, b in rgb_values]
|
|
|
|
|
|
|
| 100 |
sorted_hex_codes = [code for _, code in sorted(zip(luminance_values, hex_codes), reverse=True)]
|
|
|
|
|
|
|
| 101 |
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
|
|
|
|
|
|
| 102 |
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
|
|
|
| 103 |
for i, ax in enumerate(axes.flat):
|
| 104 |
ax.set_axis_off()
|
| 105 |
+
if i < len(sorted_hex_codes):
|
| 106 |
+
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=sorted_hex_codes[i]))
|
| 107 |
return fig
|
| 108 |
|
|
|
|
| 109 |
def generate_images_plots(prompt, model_name):
|
|
|
|
|
|
|
| 110 |
global pipeline_text2image
|
| 111 |
+
pipeline_text2image = load_model(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
foldername = "temp"
|
|
|
|
|
|
|
|
|
|
| 113 |
Path(foldername).mkdir(parents=True, exist_ok=True)
|
| 114 |
+
images = [getimgen(prompt) for _ in range(10)]
|
| 115 |
genders = []
|
| 116 |
skintones = []
|
|
|
|
| 117 |
for image, i in zip(images, range(10)):
|
| 118 |
prompt_prefix = "photo of a "
|
| 119 |
caption = blip_caption_image(image, prefix=prompt_prefix)
|
|
|
|
| 124 |
skintones.append(tone)
|
| 125 |
except:
|
| 126 |
skintones.append(None)
|
|
|
|
| 127 |
genders.append(genderfromcaption(caption))
|
|
|
|
|
|
|
|
|
|
| 128 |
return images, skintoneplot(skintones), genderplot(genders)
|
| 129 |
|
| 130 |
+
with gr.Blocks(title="Skin Tone and Gender bias in Text to Image Models") as demo:
|
|
|
|
| 131 |
gr.Markdown("# Skin Tone and Gender bias in Text to Image Models")
|
| 132 |
+
model_dropdown = gr.Dropdown(
|
| 133 |
+
label="Choose a model",
|
| 134 |
+
choices=[
|
| 135 |
+
"stabilityai/sdxl-turbo",
|
| 136 |
+
"runwayml/stable-diffusion-v1-5",
|
| 137 |
+
"ByteDance/SDXL-Lightning",
|
| 138 |
+
"segmind/SSD-1B"
|
| 139 |
+
],
|
| 140 |
+
value=default_model
|
| 141 |
+
)
|
| 142 |
prompt = gr.Textbox(label="Enter the Prompt")
|
| 143 |
+
gallery = gr.Gallery(
|
| 144 |
+
label="Generated images",
|
| 145 |
+
show_label=False,
|
| 146 |
+
elem_id="gallery",
|
| 147 |
+
columns=[5],
|
| 148 |
+
rows=[2],
|
| 149 |
+
object_fit="contain",
|
| 150 |
+
height="auto"
|
| 151 |
+
)
|
| 152 |
btn = gr.Button("Generate images", scale=0)
|
| 153 |
with gr.Row(equal_height=True):
|
| 154 |
skinplot = gr.Plot(label="Skin Tone")
|
| 155 |
genplot = gr.Plot(label="Gender")
|
|
|
|
| 156 |
btn.click(generate_images_plots, inputs=[prompt, model_dropdown], outputs=[gallery, skinplot, genplot])
|
| 157 |
|
| 158 |
+
demo.launch(debug=True)
|