Spaces:
Running
on
Zero
Running
on
Zero
Avijit Ghosh
commited on
Commit
·
e7204ee
1
Parent(s):
17497eb
add login
Browse files
app.py
CHANGED
|
@@ -4,12 +4,16 @@ from diffusers import DiffusionPipeline, StableDiffusionPipeline, StableDiffusio
|
|
| 4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 5 |
from pathlib import Path
|
| 6 |
from safetensors.torch import load_file
|
| 7 |
-
from huggingface_hub import hf_hub_download
|
| 8 |
from PIL import Image
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
from matplotlib.colors import hex2color
|
| 11 |
import stone
|
| 12 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Define model initialization functions
|
| 15 |
def load_model(model_name, token=None):
|
|
@@ -59,10 +63,10 @@ def load_model(model_name, token=None):
|
|
| 59 |
default_model = "stabilityai/sdxl-turbo"
|
| 60 |
pipeline_text2image = load_model(default_model)
|
| 61 |
|
| 62 |
-
@
|
| 63 |
-
def getimgen(prompt, model_name
|
| 64 |
global pipeline_text2image
|
| 65 |
-
pipeline_text2image = load_model(model_name
|
| 66 |
if model_name == "stabilityai/sdxl-turbo":
|
| 67 |
return pipeline_text2image(prompt=prompt, guidance_scale=0.0, num_inference_steps=2).images[0]
|
| 68 |
elif model_name == "runwayml/stable-diffusion-v1-5":
|
|
@@ -78,7 +82,7 @@ def getimgen(prompt, model_name, token):
|
|
| 78 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 79 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
| 80 |
|
| 81 |
-
@
|
| 82 |
def blip_caption_image(image, prefix):
|
| 83 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
| 84 |
out = blip_model.generate(**inputs)
|
|
@@ -117,11 +121,13 @@ def skintoneplot(hex_codes):
|
|
| 117 |
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=sorted_hex_codes[i]))
|
| 118 |
return fig
|
| 119 |
|
| 120 |
-
@
|
| 121 |
-
def generate_images_plots(prompt, model_name
|
|
|
|
|
|
|
| 122 |
foldername = "temp"
|
| 123 |
Path(foldername).mkdir(parents=True, exist_ok=True)
|
| 124 |
-
images = [getimgen(prompt, model_name
|
| 125 |
genders = []
|
| 126 |
skintones = []
|
| 127 |
for image, i in zip(images, range(10)):
|
|
@@ -139,9 +145,6 @@ def generate_images_plots(prompt, model_name, token):
|
|
| 139 |
|
| 140 |
with gr.Blocks(title="Skin Tone and Gender bias in Text to Image Models") as demo:
|
| 141 |
gr.Markdown("# Skin Tone and Gender bias in Text to Image Models")
|
| 142 |
-
gr.LoginButton() # Add a login button for Hugging Face
|
| 143 |
-
profile = gr.State()
|
| 144 |
-
token = gr.State()
|
| 145 |
model_dropdown = gr.Dropdown(
|
| 146 |
label="Choose a model",
|
| 147 |
choices=[
|
|
@@ -163,10 +166,12 @@ with gr.Blocks(title="Skin Tone and Gender bias in Text to Image Models") as dem
|
|
| 163 |
object_fit="contain",
|
| 164 |
height="auto"
|
| 165 |
)
|
|
|
|
|
|
|
| 166 |
btn = gr.Button("Generate images", scale=0)
|
| 167 |
with gr.Row(equal_height=True):
|
| 168 |
skinplot = gr.Plot(label="Skin Tone")
|
| 169 |
genplot = gr.Plot(label="Gender")
|
| 170 |
-
btn.click(generate_images_plots, inputs=[prompt, model_dropdown
|
| 171 |
|
| 172 |
-
demo.launch()
|
|
|
|
| 4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 5 |
from pathlib import Path
|
| 6 |
from safetensors.torch import load_file
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
from PIL import Image
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
from matplotlib.colors import hex2color
|
| 11 |
import stone
|
| 12 |
import os
|
| 13 |
+
import spaces
|
| 14 |
+
|
| 15 |
+
from huggingface_hub import login
|
| 16 |
+
login()
|
| 17 |
|
| 18 |
# Define model initialization functions
|
| 19 |
def load_model(model_name, token=None):
|
|
|
|
| 63 |
default_model = "stabilityai/sdxl-turbo"
|
| 64 |
pipeline_text2image = load_model(default_model)
|
| 65 |
|
| 66 |
+
@spaces.GPU
|
| 67 |
+
def getimgen(prompt, model_name):
|
| 68 |
global pipeline_text2image
|
| 69 |
+
pipeline_text2image = load_model(model_name)
|
| 70 |
if model_name == "stabilityai/sdxl-turbo":
|
| 71 |
return pipeline_text2image(prompt=prompt, guidance_scale=0.0, num_inference_steps=2).images[0]
|
| 72 |
elif model_name == "runwayml/stable-diffusion-v1-5":
|
|
|
|
| 82 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 83 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
| 84 |
|
| 85 |
+
@spaces.GPU
|
| 86 |
def blip_caption_image(image, prefix):
|
| 87 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
| 88 |
out = blip_model.generate(**inputs)
|
|
|
|
| 121 |
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=sorted_hex_codes[i]))
|
| 122 |
return fig
|
| 123 |
|
| 124 |
+
@spaces.GPU
|
| 125 |
+
def generate_images_plots(prompt, model_name):
|
| 126 |
+
global pipeline_text2image
|
| 127 |
+
pipeline_text2image = load_model(model_name)
|
| 128 |
foldername = "temp"
|
| 129 |
Path(foldername).mkdir(parents=True, exist_ok=True)
|
| 130 |
+
images = [getimgen(prompt, model_name) for _ in range(10)]
|
| 131 |
genders = []
|
| 132 |
skintones = []
|
| 133 |
for image, i in zip(images, range(10)):
|
|
|
|
| 145 |
|
| 146 |
with gr.Blocks(title="Skin Tone and Gender bias in Text to Image Models") as demo:
|
| 147 |
gr.Markdown("# Skin Tone and Gender bias in Text to Image Models")
|
|
|
|
|
|
|
|
|
|
| 148 |
model_dropdown = gr.Dropdown(
|
| 149 |
label="Choose a model",
|
| 150 |
choices=[
|
|
|
|
| 166 |
object_fit="contain",
|
| 167 |
height="auto"
|
| 168 |
)
|
| 169 |
+
gr.LoginButton()
|
| 170 |
+
gr.Markdown('### You need to log in to your Hugging Face account to run Stable Diffusion 3')
|
| 171 |
btn = gr.Button("Generate images", scale=0)
|
| 172 |
with gr.Row(equal_height=True):
|
| 173 |
skinplot = gr.Plot(label="Skin Tone")
|
| 174 |
genplot = gr.Plot(label="Gender")
|
| 175 |
+
btn.click(generate_images_plots, inputs=[prompt, model_dropdown], outputs=[gallery, skinplot, genplot])
|
| 176 |
|
| 177 |
+
demo.launch(debug=True)
|