Spaces:
Sleeping
Sleeping
Upload tools.py
Browse files
tools.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
import io
|
| 4 |
+
from typing import List
|
| 5 |
+
from PIL.Image import Image
|
| 6 |
+
from langchain_core.tools import tool
|
| 7 |
+
from pinecone import Pinecone
|
| 8 |
+
|
| 9 |
+
SWIN_API_URL = os.environ.get("SWIN_MODEL_URL", "https://api-inference.huggingface.co/models/Jyo-K/skin_swin")
|
| 10 |
+
HF_API_KEY = os.environ.get("HF_API_KEY")
|
| 11 |
+
EMBEDDING_API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
|
| 12 |
+
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
| 13 |
+
PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX_NAME")
|
| 14 |
+
|
| 15 |
+
SWIN_LABELS = [
|
| 16 |
+
'1. Enfeksiyonel',
|
| 17 |
+
'2. Ekzama',
|
| 18 |
+
'3. Akne',
|
| 19 |
+
'4. Pigment',
|
| 20 |
+
'5. Benign',
|
| 21 |
+
'6. Malign'
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
_pinecone_client = None
|
| 26 |
+
_pinecone_index = None
|
| 27 |
+
|
| 28 |
+
def get_pinecone_index():
|
| 29 |
+
"""Lazily initializes and returns the Pinecone index."""
|
| 30 |
+
global _pinecone_client, _pinecone_index
|
| 31 |
+
if _pinecone_index is None:
|
| 32 |
+
if not PINECONE_API_KEY or not PINECONE_INDEX_NAME:
|
| 33 |
+
raise ValueError("PINECONE_API_KEY or PINECONE_INDEX_NAME not set.")
|
| 34 |
+
|
| 35 |
+
_pinecone_client = Pinecone(api_key=PINECONE_API_KEY)
|
| 36 |
+
_pinecone_index = _pinecone_client.Index(PINECONE_INDEX_NAME)
|
| 37 |
+
print("--- Pinecone Index Initialized ---")
|
| 38 |
+
return _pinecone_index
|
| 39 |
+
|
| 40 |
+
def get_embedding_hf(text: str) -> List[float]:
|
| 41 |
+
"""Gets the embedding for a text query using the HF Inference API."""
|
| 42 |
+
if not HF_API_KEY:
|
| 43 |
+
raise ValueError("HF_API_KEY not set. Cannot get embeddings.")
|
| 44 |
+
|
| 45 |
+
response = requests.post(
|
| 46 |
+
EMBEDDING_API_URL,
|
| 47 |
+
headers={"Authorization": f"Bearer {HF_API_KEY}"},
|
| 48 |
+
json={"inputs": text, "options": {"wait_for_model": True}}
|
| 49 |
+
)
|
| 50 |
+
response.raise_for_status()
|
| 51 |
+
return response.json()[0]
|
| 52 |
+
|
| 53 |
+
@tool
|
| 54 |
+
def tool_analyze_skin_image(image: Image) -> str:
|
| 55 |
+
"""
|
| 56 |
+
Analyzes a PIL Image of a skin condition using the Swin Transformer
|
| 57 |
+
Inference API and returns the top predicted disease name.
|
| 58 |
+
"""
|
| 59 |
+
if not HF_API_KEY:
|
| 60 |
+
return "Error: Hugging Face API token not found."
|
| 61 |
+
|
| 62 |
+
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
|
| 63 |
+
|
| 64 |
+
buffered = io.BytesIO()
|
| 65 |
+
image.save(buffered, format="JPEG")
|
| 66 |
+
img_data = buffered.getvalue()
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
response = requests.post(
|
| 70 |
+
SWIN_API_URL,
|
| 71 |
+
headers=headers,
|
| 72 |
+
data=img_data
|
| 73 |
+
)
|
| 74 |
+
response.raise_for_status()
|
| 75 |
+
api_output = response.json()
|
| 76 |
+
|
| 77 |
+
if isinstance(api_output, dict) and 'error' in api_output:
|
| 78 |
+
return f"Error from Swin API: {api_output['error']}"
|
| 79 |
+
|
| 80 |
+
if isinstance(api_output, list) and api_output:
|
| 81 |
+
top_prediction = max(api_output, key=lambda x: x['score'])
|
| 82 |
+
|
| 83 |
+
label_name = top_prediction['label']
|
| 84 |
+
if "LABEL_" in label_name:
|
| 85 |
+
try:
|
| 86 |
+
idx = int(label_name.split('_')[-1])
|
| 87 |
+
disease_name_with_prefix = SWIN_LABELS[idx]
|
| 88 |
+
except (IndexError, ValueError):
|
| 89 |
+
return f"Error: Model returned unknown label {label_name}"
|
| 90 |
+
else:
|
| 91 |
+
disease_name_with_prefix = label_name
|
| 92 |
+
|
| 93 |
+
disease_name = disease_name_with_prefix.split('. ')[-1]
|
| 94 |
+
print(f"Image Analysis Tool: Predicted '{disease_name}'")
|
| 95 |
+
return disease_name
|
| 96 |
+
else:
|
| 97 |
+
return "Error: Invalid API response format from Swin model."
|
| 98 |
+
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"Image Analysis Tool Error: {e}")
|
| 101 |
+
return f"Error during Swin API call: {e}"
|
| 102 |
+
|
| 103 |
+
@tool
|
| 104 |
+
def tool_fetch_disease_info(disease_name: str) -> dict:
|
| 105 |
+
"""
|
| 106 |
+
Queries the Pinecone vector database to find symptoms and treatment
|
| 107 |
+
information for a given disease name.
|
| 108 |
+
"""
|
| 109 |
+
try:
|
| 110 |
+
index = get_pinecone_index()
|
| 111 |
+
except ValueError as e:
|
| 112 |
+
return {"error": str(e)}
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
print(f"Vector DB Tool: Getting embedding for '{disease_name}'")
|
| 116 |
+
query_embedding = get_embedding_hf(disease_name)
|
| 117 |
+
|
| 118 |
+
query_response = index.query(
|
| 119 |
+
vector=query_embedding,
|
| 120 |
+
top_k=1,
|
| 121 |
+
include_metadata=True
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
if not query_response.get('matches') or query_response['matches'][0]['score'] < 0.5:
|
| 125 |
+
return {"error": f"No high-confidence information found for '{disease_name}' in the database."}
|
| 126 |
+
|
| 127 |
+
metadata = query_response['matches'][0]['metadata']
|
| 128 |
+
|
| 129 |
+
symptoms_str = metadata.get("symptoms", "")
|
| 130 |
+
symptoms_list = [s.strip() for s in symptoms_str.split(',') if s.strip()]
|
| 131 |
+
treatment = metadata.get("treatment", "No treatment information found.")
|
| 132 |
+
|
| 133 |
+
return {
|
| 134 |
+
"disease": metadata.get("disease", disease_name),
|
| 135 |
+
"symptoms": symptoms_list,
|
| 136 |
+
"treatment": treatment,
|
| 137 |
+
"context": metadata.get("text_content", "")
|
| 138 |
+
}
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"Vector DB Tool Error: {e}")
|
| 141 |
+
return {"error": f"Error during Pinecone query: {e}"}
|
| 142 |
+
|