Update code to use 202509_onnx_small model
Browse files- onnx_text_recognition.py +341 -93
onnx_text_recognition.py
CHANGED
|
@@ -1,115 +1,363 @@
|
|
| 1 |
-
from
|
|
|
|
| 2 |
from transformers import TrOCRProcessor
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import onnxruntime
|
| 5 |
import math
|
|
|
|
| 6 |
import cv2
|
| 7 |
import os
|
| 8 |
|
| 9 |
class TextRecognition:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def __init__(self,
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
self.half_precision = half_precision
|
| 18 |
-
self.line_threshold = line_threshold
|
| 19 |
-
self.processor_path = processor_path
|
| 20 |
self.model_path = model_path
|
| 21 |
-
self.
|
| 22 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
try:
|
| 27 |
-
processor = TrOCRProcessor.from_pretrained(
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
except Exception as e:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
sess_options = onnxruntime.SessionOptions()
|
| 35 |
-
sess_options.
|
| 36 |
-
sess_options.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
except Exception as e:
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def crop_line(self, image, polygon
|
| 44 |
-
"""
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
mask = np.zeros([cropped_image.shape[0], cropped_image.shape[1]], dtype=np.uint8)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
cv2.
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
cropped_lines = []
|
| 61 |
for i, polygon in enumerate(polygons):
|
| 62 |
-
cropped_line = self.crop_line(image, polygon
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
return cropped_lines
|
| 65 |
|
| 66 |
-
def
|
| 67 |
-
"""
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import VisionEncoderDecoderConfig
|
| 2 |
+
from typing import List, Tuple, Optional
|
| 3 |
from transformers import TrOCRProcessor
|
| 4 |
+
from pathlib import Path
|
| 5 |
import numpy as np
|
| 6 |
import onnxruntime
|
| 7 |
import math
|
| 8 |
+
import time
|
| 9 |
import cv2
|
| 10 |
import os
|
| 11 |
|
| 12 |
class TextRecognition:
|
| 13 |
+
"""
|
| 14 |
+
ONNX-based text recognition class using TrOCR for handwritten text recognition.
|
| 15 |
+
|
| 16 |
+
Processes text line images through an encoder-decoder architecture, supporting
|
| 17 |
+
batch processing and CUDA acceleration.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
model_path: Path to the model directory containing ONNX models and config
|
| 21 |
+
device: Device identifier (default: 'cuda:0')
|
| 22 |
+
batch_size: Number of lines to process in parallel (default: 10)
|
| 23 |
+
img_height: Target height for input images (default: 192)
|
| 24 |
+
img_width: Target width for input images (default: 1024)
|
| 25 |
+
max_length: Maximum sequence length for generation (default: 128)
|
| 26 |
+
"""
|
| 27 |
def __init__(self,
|
| 28 |
+
model_path: str,
|
| 29 |
+
device: str = 'cuda:0',
|
| 30 |
+
batch_size: int = 10,
|
| 31 |
+
img_height: int = 192,
|
| 32 |
+
img_width: int = 1024,
|
| 33 |
+
max_length: int = 128):
|
|
|
|
|
|
|
|
|
|
| 34 |
self.model_path = model_path
|
| 35 |
+
self.device = device
|
| 36 |
+
self.batch_size = batch_size
|
| 37 |
+
self.img_height = img_height
|
| 38 |
+
self.img_width = img_width
|
| 39 |
+
self.max_length = max_length
|
| 40 |
+
|
| 41 |
+
# Validate model path
|
| 42 |
+
if not os.path.exists(self.model_path):
|
| 43 |
+
raise FileNotFoundError(f"Model path does not exist: {model_path}")
|
| 44 |
+
|
| 45 |
+
self.init_processor()
|
| 46 |
+
self.init_recognition_model()
|
| 47 |
+
|
| 48 |
+
def init_processor(self) -> None:
|
| 49 |
+
"""
|
| 50 |
+
Initialize the TrOCR processor with custom image dimensions.
|
| 51 |
|
| 52 |
+
Raises:
|
| 53 |
+
Exception: If processor initialization fails
|
| 54 |
+
"""
|
| 55 |
try:
|
| 56 |
+
self.processor = TrOCRProcessor.from_pretrained(
|
| 57 |
+
str(self.model_path),
|
| 58 |
+
use_fast=True,
|
| 59 |
+
do_resize=True,
|
| 60 |
+
size={
|
| 61 |
+
'height': self.img_height,
|
| 62 |
+
'width': self.img_width
|
| 63 |
+
}
|
| 64 |
+
)
|
| 65 |
+
print(f"✓ Processor loaded with custom image size: {self.img_height}x{self.img_width}")
|
| 66 |
except Exception as e:
|
| 67 |
+
raise RuntimeError(f'Failed to initialize processor: {e}')
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def init_recognition_model(self) -> None:
|
| 71 |
+
"""
|
| 72 |
+
Initialize the ONNX encoder and decoder models with optimized settings.
|
| 73 |
+
|
| 74 |
+
Raises:
|
| 75 |
+
FileNotFoundError: If model files are not found
|
| 76 |
+
RuntimeError: If model loading fails
|
| 77 |
+
"""
|
| 78 |
+
encoder_path = os.path.join(self.model_path, "encoder_model.onnx")
|
| 79 |
+
decoder_path = os.path.join(self.model_path, "decoder_model.onnx")
|
| 80 |
+
|
| 81 |
+
if not os.path.exists(encoder_path):
|
| 82 |
+
raise FileNotFoundError(f"Encoder model not found: {encoder_path}")
|
| 83 |
+
if not os.path.exists(decoder_path):
|
| 84 |
+
raise FileNotFoundError(f"Decoder model not found: {decoder_path}")
|
| 85 |
+
|
| 86 |
+
# Session options for better performance
|
| 87 |
sess_options = onnxruntime.SessionOptions()
|
| 88 |
+
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 89 |
+
sess_options.intra_op_num_threads = 4
|
| 90 |
+
|
| 91 |
+
providers = [
|
| 92 |
+
'CUDAExecutionProvider',
|
| 93 |
+
'CPUExecutionProvider'
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
# Load model config
|
| 97 |
+
self.config = VisionEncoderDecoderConfig.from_pretrained(str(self.model_path))
|
| 98 |
+
|
| 99 |
try:
|
| 100 |
+
print("Loading encoder...")
|
| 101 |
+
self.encoder = onnxruntime.InferenceSession(
|
| 102 |
+
str(encoder_path),
|
| 103 |
+
sess_options=sess_options,
|
| 104 |
+
providers=providers
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
print("Loading decoder...")
|
| 108 |
+
self.decoder = onnxruntime.InferenceSession(
|
| 109 |
+
str(decoder_path),
|
| 110 |
+
sess_options=sess_options,
|
| 111 |
+
providers=providers
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Report which provider is actually being used
|
| 115 |
+
encoder_provider = self.encoder.get_providers()[0]
|
| 116 |
+
decoder_provider = self.decoder.get_providers()[0]
|
| 117 |
+
print(f"✓ Using execution provider: Encoder={encoder_provider}, Decoder={decoder_provider}")
|
| 118 |
+
|
| 119 |
except Exception as e:
|
| 120 |
+
raise RuntimeError(f'Failed to load recognition models: {e}')
|
| 121 |
+
|
| 122 |
+
def crop_line(self, image: np.ndarray, polygon: List[List[float]]) -> Optional[np.ndarray]:
|
| 123 |
+
"""
|
| 124 |
+
Crop a text line from an image based on polygon coordinates.
|
| 125 |
+
|
| 126 |
+
Creates a masked crop where the polygon area contains the original image
|
| 127 |
+
and the background is filled with white pixels.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
image: Source image as numpy array
|
| 131 |
+
polygon: List of [x, y] coordinate pairs defining the text line region
|
| 132 |
+
|
| 133 |
+
Returns:
|
| 134 |
+
Cropped and masked text line image, or None if polygon is invalid
|
| 135 |
+
"""
|
| 136 |
+
# Convert polygon to integer coordinates
|
| 137 |
+
polygon_array = np.array([[int(pt[0]), int(pt[1])] for pt in polygon], dtype=np.int32)
|
| 138 |
+
|
| 139 |
+
# Get bounding rectangle
|
| 140 |
+
rect = cv2.boundingRect(polygon_array)
|
| 141 |
+
x, y, w, h = rect
|
| 142 |
+
|
| 143 |
+
# Validate rectangle
|
| 144 |
+
if w <= 0 or h <= 0:
|
| 145 |
+
print(f"Warning: Invalid bounding rect dimensions: {w}x{h}")
|
| 146 |
+
return None
|
| 147 |
+
|
| 148 |
+
# Crop image to bounding rectangle
|
| 149 |
+
cropped_image = image[y:y + h, x:x + w]
|
| 150 |
+
|
| 151 |
+
if cropped_image.size == 0:
|
| 152 |
+
print(f"Warning: Empty cropped image at rect {rect}")
|
| 153 |
+
return None
|
| 154 |
+
|
| 155 |
+
# Create mask for the polygon region
|
| 156 |
mask = np.zeros([cropped_image.shape[0], cropped_image.shape[1]], dtype=np.uint8)
|
| 157 |
+
|
| 158 |
+
# Adjust polygon coordinates relative to the cropped region
|
| 159 |
+
polygon_offset = polygon_array - np.array([[x, y]])
|
| 160 |
+
cv2.drawContours(mask, [polygon_offset], -1, (255, 255, 255), -1, cv2.LINE_AA)
|
| 161 |
+
|
| 162 |
+
# Extract the polygon region from the cropped image
|
| 163 |
+
masked_region = cv2.bitwise_and(cropped_image, cropped_image, mask=mask)
|
| 164 |
+
|
| 165 |
+
# Create white background
|
| 166 |
+
white_background = np.ones_like(cropped_image, np.uint8) * 255
|
| 167 |
+
cv2.bitwise_not(white_background, white_background, mask=mask)
|
| 168 |
+
|
| 169 |
+
# Overlay the masked region on white background
|
| 170 |
+
result = white_background + masked_region
|
| 171 |
+
|
| 172 |
+
return result
|
| 173 |
+
|
| 174 |
+
def crop_lines(self, polygons: List[List[List[float]]], image: np.ndarray) -> List[np.ndarray]:
|
| 175 |
+
"""
|
| 176 |
+
Crop multiple text lines from an image.
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
polygons: List of polygon coordinate lists
|
| 180 |
+
image: Source image
|
| 181 |
+
|
| 182 |
+
Returns:
|
| 183 |
+
List of cropped text line images (excluding any failed crops)
|
| 184 |
+
"""
|
| 185 |
cropped_lines = []
|
| 186 |
for i, polygon in enumerate(polygons):
|
| 187 |
+
cropped_line = self.crop_line(image, polygon)
|
| 188 |
+
if cropped_line is not None:
|
| 189 |
+
cropped_lines.append(cropped_line)
|
| 190 |
+
else:
|
| 191 |
+
print(f"Warning: Failed to crop line {i}")
|
| 192 |
return cropped_lines
|
| 193 |
|
| 194 |
+
def encode(self, pixel_values: np.ndarray) -> np.ndarray:
|
| 195 |
+
"""
|
| 196 |
+
Encode image pixel values into hidden states using the vision encoder.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
pixel_values: Preprocessed image tensor from TrOCRProcessor
|
| 200 |
+
Shape: (batch_size, channels, height, width)
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
Encoder hidden states for input to the decoder
|
| 204 |
+
Shape: (batch_size, sequence_length, hidden_size)
|
| 205 |
+
|
| 206 |
+
Raises:
|
| 207 |
+
RuntimeError: If encoding fails
|
| 208 |
+
"""
|
| 209 |
+
try:
|
| 210 |
+
encoder_outputs = self.encoder.run(
|
| 211 |
+
None,
|
| 212 |
+
{"pixel_values": pixel_values}
|
| 213 |
+
)[0]
|
| 214 |
+
return encoder_outputs
|
| 215 |
+
except Exception as e:
|
| 216 |
+
raise RuntimeError(f'Failed to encode input: {e}')
|
| 217 |
+
|
| 218 |
+
def generate(self, encoder_outputs: np.ndarray, batch_size: int) -> np.ndarray:
|
| 219 |
+
"""
|
| 220 |
+
Generate text tokens using autoregressive decoding with early stopping.
|
| 221 |
+
|
| 222 |
+
Implements per-sequence early stopping: sequences that generate EOS tokens
|
| 223 |
+
stop producing new tokens while others continue, improving efficiency.
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
encoder_outputs: Hidden states from the encoder
|
| 227 |
+
Shape: (batch_size, sequence_length, hidden_size)
|
| 228 |
+
batch_size: Number of sequences in the batch
|
| 229 |
+
|
| 230 |
+
Returns:
|
| 231 |
+
Generated token IDs including start and end tokens
|
| 232 |
+
Shape: (batch_size, generated_length)
|
| 233 |
+
|
| 234 |
+
Raises:
|
| 235 |
+
RuntimeError: If generation fails
|
| 236 |
+
"""
|
| 237 |
+
try:
|
| 238 |
+
# Initialize decoder input with start tokens
|
| 239 |
+
decoder_input_ids = np.full(
|
| 240 |
+
(batch_size, 1),
|
| 241 |
+
self.config.decoder_start_token_id,
|
| 242 |
+
dtype=np.int64
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# Track which sequences have finished
|
| 246 |
+
finished = np.zeros(batch_size, dtype=bool)
|
| 247 |
+
|
| 248 |
+
for step in range(self.max_length):
|
| 249 |
+
# Run decoder to get next token logits
|
| 250 |
+
decoder_outputs = self.decoder.run(
|
| 251 |
+
None,
|
| 252 |
+
{
|
| 253 |
+
"input_ids": decoder_input_ids,
|
| 254 |
+
"encoder_hidden_states": encoder_outputs
|
| 255 |
+
}
|
| 256 |
+
)[0]
|
| 257 |
+
|
| 258 |
+
# Get most likely next token for each sequence
|
| 259 |
+
next_token_logits = decoder_outputs[:, -1, :]
|
| 260 |
+
next_tokens = np.argmax(next_token_logits, axis=-1)
|
| 261 |
+
|
| 262 |
+
# Check if any sequences just generated EOS token
|
| 263 |
+
just_finished = (next_tokens == self.config.eos_token_id)
|
| 264 |
+
finished = finished | just_finished
|
| 265 |
+
|
| 266 |
+
## Replace tokens with PAD for already finished sequences
|
| 267 |
+
next_tokens[finished] = self.config.pad_token_id
|
| 268 |
+
|
| 269 |
+
# Append new tokens to the sequence
|
| 270 |
+
next_tokens = next_tokens.reshape(-1, 1)
|
| 271 |
+
decoder_input_ids = np.concatenate([decoder_input_ids, next_tokens], axis=1)
|
| 272 |
+
|
| 273 |
+
# Stop when all sequences have finished
|
| 274 |
+
if np.all(finished):
|
| 275 |
+
break
|
| 276 |
+
|
| 277 |
+
return decoder_input_ids
|
| 278 |
+
|
| 279 |
+
except Exception as e:
|
| 280 |
+
raise RuntimeError(f'Failed to generate output ids: {e}')
|
| 281 |
+
|
| 282 |
+
def predict_text(self, cropped_lines: List[np.ndarray]) -> List[str]:
|
| 283 |
+
"""
|
| 284 |
+
Predict text content from cropped line images.
|
| 285 |
+
|
| 286 |
+
Args:
|
| 287 |
+
cropped_lines: List of cropped text line images
|
| 288 |
+
|
| 289 |
+
Returns:
|
| 290 |
+
List of predicted text strings
|
| 291 |
+
|
| 292 |
+
Raises:
|
| 293 |
+
RuntimeError: If prediction fails
|
| 294 |
+
"""
|
| 295 |
+
try:
|
| 296 |
+
# Process image with TrOCR processor
|
| 297 |
+
# Use 'pt' (PyTorch) then convert to numpy, as 'np' is not supported by fast processors
|
| 298 |
+
pixel_values = self.processor(cropped_lines, return_tensors="pt").pixel_values
|
| 299 |
+
pixel_values = pixel_values.numpy()
|
| 300 |
+
batch_size = pixel_values.shape[0]
|
| 301 |
+
|
| 302 |
+
#Encode images to hidden states
|
| 303 |
+
encoder_hidden_states = self.encode(pixel_values)
|
| 304 |
+
|
| 305 |
+
# Generate token sequences
|
| 306 |
+
generated_ids = self.generate(encoder_hidden_states, batch_size)
|
| 307 |
+
|
| 308 |
+
# Decode tokens to text
|
| 309 |
+
texts = self.processor.batch_decode(
|
| 310 |
+
generated_ids,
|
| 311 |
+
skip_special_tokens=True,
|
| 312 |
+
clean_up_tokenization_spaces=False
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
return texts
|
| 316 |
+
|
| 317 |
+
except Exception as e:
|
| 318 |
+
raise RuntimeError(f'Failed to predict text: {e}')
|
| 319 |
+
|
| 320 |
+
def get_text_lines(self, cropped_lines: List[np.ndarray]) -> List[str]:
|
| 321 |
+
"""
|
| 322 |
+
Process text lines in batches to manage memory efficiently.
|
| 323 |
+
|
| 324 |
+
Args:
|
| 325 |
+
cropped_lines: List of all cropped line images
|
| 326 |
+
|
| 327 |
+
Returns:
|
| 328 |
+
List of predicted text strings for all lines
|
| 329 |
+
"""
|
| 330 |
+
generated_text = []
|
| 331 |
+
|
| 332 |
+
# Process in batches
|
| 333 |
+
for i in range(0, len(cropped_lines), self.batch_size):
|
| 334 |
+
batch = cropped_lines[i:i + self.batch_size]
|
| 335 |
+
texts = self.predict_text(batch)
|
| 336 |
+
generated_text.extend(texts)
|
| 337 |
+
|
| 338 |
return generated_text
|
| 339 |
+
|
| 340 |
+
def process_lines(self,
|
| 341 |
+
polygons: List[List[List[float]]],
|
| 342 |
+
image: np.ndarray) -> List[str]:
|
| 343 |
+
"""
|
| 344 |
+
Complete pipeline: crop text lines and predict their content.
|
| 345 |
+
|
| 346 |
+
Args:
|
| 347 |
+
polygons: List of polygon coordinate lists defining text line regions
|
| 348 |
+
image: Source document image
|
| 349 |
+
|
| 350 |
+
Returns:
|
| 351 |
+
List of predicted text strings for each valid line
|
| 352 |
+
"""
|
| 353 |
+
# Crop line images from the document
|
| 354 |
+
cropped_lines = self.crop_lines(polygons, image)
|
| 355 |
+
|
| 356 |
+
if not cropped_lines:
|
| 357 |
+
print("Warning: No valid cropped lines to process")
|
| 358 |
+
return []
|
| 359 |
+
|
| 360 |
+
# Get text predictions for all lines
|
| 361 |
+
generated_text = self.get_text_lines(cropped_lines)
|
| 362 |
+
|
| 363 |
+
return generated_text
|