File size: 36,111 Bytes
262640f
741560b
 
 
66e335c
282d730
262640f
 
d3a2eea
262640f
 
 
 
 
 
ef6a315
262640f
741560b
262640f
ef6a315
a5f2a6f
2eae76d
4988947
 
 
741560b
4988947
 
 
 
 
ef6a315
d01ce1f
ef6a315
 
4988947
 
 
 
 
 
 
 
741560b
4988947
ef6a315
d01ce1f
ef6a315
 
3701246
ef6a315
2eae76d
 
 
 
3701246
 
ef6a315
 
3701246
262640f
ef6a315
 
3701246
262640f
 
 
ef6a315
 
 
 
262640f
 
3701246
262640f
 
ef6a315
 
 
 
 
 
3701246
ef6a315
3701246
ef6a315
 
aaf6031
 
ef6a315
 
 
 
3701246
ef6a315
3701246
 
ef6a315
a5f2a6f
ff8b320
a5f2a6f
262640f
 
 
3701246
ef6a315
 
 
 
 
ecd3544
ef6a315
 
 
 
3701246
 
262640f
 
ff8b320
ef6a315
 
d3a2eea
262640f
ef6a315
 
262640f
 
 
 
 
 
 
3701246
 
 
d01ce1f
741560b
 
8285ac1
 
 
 
 
 
 
 
 
 
d3a2eea
8285ac1
d3a2eea
8285ac1
 
 
 
 
d01ce1f
3701246
8285ac1
282d730
741560b
82f92ea
 
 
 
 
 
 
 
 
 
741560b
82f92ea
 
 
 
 
 
 
 
 
 
 
d3a2eea
82f92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
741560b
82f92ea
 
 
 
 
 
 
 
 
 
741560b
8285ac1
 
 
 
 
 
 
 
d3a2eea
8285ac1
 
4988947
8285ac1
 
 
 
 
 
 
 
 
741560b
8285ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
4988947
8285ac1
 
 
 
 
4988947
8285ac1
 
 
 
 
4988947
8285ac1
 
 
 
 
 
 
82f92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8285ac1
741560b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4988947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839da1
741560b
1839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4988947
741560b
 
 
 
 
 
1839da1
741560b
 
1839da1
741560b
 
 
1839da1
741560b
 
1839da1
4988947
 
 
 
741560b
4988947
 
 
741560b
4988947
 
 
 
 
 
5d84ed2
741560b
82f92ea
741560b
5d84ed2
 
 
 
 
4988947
 
 
 
 
 
 
5d84ed2
 
 
4988947
82f92ea
4988947
741560b
5d84ed2
4988947
82f92ea
 
 
 
 
 
 
4988947
82f92ea
 
 
 
4988947
741560b
5d84ed2
 
 
 
 
 
 
 
741560b
5d84ed2
 
 
 
 
 
 
8285ac1
741560b
82f92ea
5d84ed2
741560b
d3a2eea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741560b
d3a2eea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4988947
d3a2eea
 
4988947
 
 
741560b
d3a2eea
4988947
 
741560b
 
3ca8fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
4988947
d3a2eea
 
3ca8fa1
d3a2eea
 
 
 
4988947
 
 
 
 
 
 
 
 
 
 
3ca8fa1
d3a2eea
4988947
d3a2eea
4988947
 
d3a2eea
741560b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca8fa1
d3a2eea
82f92ea
 
 
 
 
741560b
 
82f92ea
 
3701246
 
262640f
3701246
82f92ea
3701246
82f92ea
 
 
741560b
82f92ea
 
3701246
ef6a315
 
aaf6031
69094d6
d3a2eea
69094d6
d3a2eea
3701246
d3a2eea
 
17a1e17
d01ce1f
69094d6
3701246
d01ce1f
69094d6
 
 
 
35b1e43
3701246
d01ce1f
 
 
 
69094d6
 
3701246
ffbcc2c
3701246
 
69094d6
35b1e43
2eae76d
 
741560b
4988947
282d730
 
 
4988947
282d730
d3a2eea
3ca8fa1
d3a2eea
 
3ca8fa1
 
 
 
 
 
d3a2eea
4988947
 
 
3ca8fa1
d3a2eea
4988947
3ca8fa1
 
 
4988947
69094d6
 
d01ce1f
 
e2fd94e
282d730
ff8b320
 
aaf6031
741560b
ff8b320
 
aaf6031
ff8b320
741560b
ff8b320
 
 
 
d01ce1f
 
 
 
ffbcc2c
d01ce1f
 
 
 
282d730
d01ce1f
 
82f92ea
69094d6
3701246
d01ce1f
 
 
aaf6031
3701246
 
 
 
741560b
3701246
 
 
4988947
ffb63f9
 
741560b
2eae76d
 
32ef794
 
66e335c
 
32ef794
66e335c
f3e6e14
66e335c
 
f3e6e14
 
 
 
 
66e335c
 
 
 
 
 
 
f3e6e14
66e335c
 
 
f3e6e14
 
 
82f92ea
 
 
d3a2eea
82f92ea
 
 
d3a2eea
82f92ea
 
 
 
f3e6e14
66e335c
 
82f92ea
f3e6e14
32ef794
66e335c
 
32ef794
2eae76d
 
 
4988947
ef6a315
d01ce1f
ef6a315
66e335c
ffbcc2c
2eae76d
ffbcc2c
ff8b320
 
ffbcc2c
4988947
d3a2eea
4988947
d3a2eea
ffbcc2c
35b1e43
 
4db5a7f
35b1e43
 
 
 
 
 
 
4988947
ffbcc2c
2eae76d
e28f0a3
ffbcc2c
 
 
741560b
69094d6
e28f0a3
 
4988947
2eae76d
66e335c
 
e28f0a3
 
262640f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
# -*- coding: utf-8 -*-
# Question Generator — Final Publishable Build (Lite/Full)
# صفحات ثابتة + Submit لكل سؤال فعليًا + منع تغيّر أبعاد صفحة الإدخال
# طور "فراغ" + طور "فهم مباشر" (mT5) مع fallbacks، صعوبة، BM25، فلترة قوية للمشتّتات، وتنويع على مستوى الفقرات.

import os, json, uuid, random, unicodedata
from dataclasses import dataclass
from pathlib import Path
from typing import List, Tuple, Optional

from PIL import Image
from pypdf import PdfReader
import fitz  # PyMuPDF
import regex as re2
import yake
import gradio as gr

# ------------------ إعدادات عامّة ------------------
random.seed(42)
DEFAULT_NUM_QUESTIONS = 6
DEFAULT_TROCR_MODEL = "microsoft/trocr-base-printed"
DEFAULT_TROCR_ZOOM   = 2.6
QUESTION_MODES = ["فراغ", "فهم مباشر"]
DIFFICULTY_MODES = ["سهل", "متوسط", "صعب"]

# BM25 (اختياري)
try:
    from rank_bm25 import BM25Okapi
    _HAS_BM25 = True
except Exception:
    _HAS_BM25 = False

# ------------------ OCR (تحميل كسول) ------------------
_OCR = {}
def get_ocr(model_id: str):
    try:
        from transformers import pipeline
        import torch
        dev = 0 if torch.cuda.is_available() else -1
        if model_id not in _OCR:
            _OCR[model_id] = pipeline("image-to-text", model=model_id, device=dev)
        return _OCR[model_id]
    except Exception:
        # بديل آمن: دالة تُعيد نصًا فارغًا
        return lambda im: [{"generated_text": ""}]

# ------------------ PDF/TXT → نص ------------------
def extract_text_with_pypdf(path: str) -> str:
    reader = PdfReader(path)
    out = []
    for p in reader.pages:
        try:
            t = p.extract_text() or ""
        except Exception:
            t = ""
        out.append(t)
    return "\n".join(out).strip()

def pdf_to_images(path: str, zoom: float=2.5) -> List[Image.Image]:
    doc = fitz.open(path); M = fitz.Matrix(zoom, zoom)
    imgs = []
    for pg in doc:
        pix = pg.get_pixmap(matrix=M, alpha=False)
        imgs.append(Image.frombytes("RGB",(pix.width,pix.height),pix.samples))
    doc.close()
    return imgs

def extract_text_with_ocr(path: str, model_id: str, zoom: float) -> str:
    ocr = get_ocr(model_id)
    parts = []
    for i, img in enumerate(pdf_to_images(path, zoom=zoom), start=1):
        try:
            out = ocr(img)
            txt = out[0].get("generated_text","").strip() if out else ""
        except Exception:
            txt = ""
        parts.append(f"--- [Page {i}] ---\n{txt}")
    return "\n\n".join(parts).strip()

def is_good(t: str, min_chars=250, min_alpha=0.15) -> bool:
    if len(t) < min_chars: return False
    alnum = sum(ch.isalnum() for ch in t)
    return (alnum/max(1,len(t))) >= min_alpha

def file_to_text(path: str, model_id=DEFAULT_TROCR_MODEL, zoom=DEFAULT_TROCR_ZOOM) -> Tuple[str,str]:
    ext = Path(path).suffix.lower()
    if ext == ".txt":
        with open(path,"r",encoding="utf-8",errors="ignore") as f:
            return f.read(), "plain text"
    raw = extract_text_with_pypdf(path)
    if is_good(raw): return raw, "embedded (pypdf)"
    return extract_text_with_ocr(path, model_id, zoom), "OCR (TrOCR)"

# ------------------ تنظيف عربي ------------------
AR_DIAC = r"[ًٌٍَُِّْ]"
def strip_headers(t:str)->str:
    out=[]
    for ln in t.splitlines():
        if re2.match(r"^\s*--- \[Page \d+\] ---\s*$", ln): continue
        if re2.match(r"^\s*(Page\s*\d+|صفحة\s*\d+)\s*$", ln): continue
        if re2.match(r"^\s*[-–—_*]{3,}\s*$", ln): continue
        out.append(ln)
    return "\n".join(out)

def norm_ar(t:str)->str:
    t = unicodedata.normalize("NFKC", t)
    t = re2.sub(r"[ـ]", "", t)
    t = re2.sub(AR_DIAC, "", t)
    t = re2.sub(r"[إأآا]", "ا", t)
    t = re2.sub(r"[يى]", "ي", t)
    t = re2.sub(r"\s+", " ", t)
    t = re2.sub(r'(\p{L})\1{2,}', r'\1', t)
    t = re2.sub(r'(\p{L})\1', r'\1', t)
    return t.strip()

def postprocess(raw:str)->str:
    t = strip_headers(raw).replace("\r","\n")
    t = re2.sub(r"\n{3,}", "\n\n", t)
    t = re2.sub(r"\d+\s*[\[\(][^\]\)]*[\]\)]", " ", t)
    t = re2.sub(r"\[\d+\]", " ", t)
    return norm_ar(t)

# ------------------ بنية السؤال ------------------
SENT_SPLIT = re2.compile(r"(?<=[\.!؟\?])\s+")
AR_STOP = set("""في على من إلى عن مع لدى ذلك هذه هذا الذين التي الذي أو أم إن أن كان تكون كانوا كانت كنت ثم قد لقد ربما بل لكن إلا سوى حتى حيث كما لما ما لماذا متى أين كيف أي هناك هنا هؤلاء أولئك نحن هو هي هم هن أنت أنتم أنتن""".split())

@dataclass
class MCQ:
    id: str
    question: str
    choices: List[str]
    answer_index: int

def split_sents(t:str)->List[str]:
    s=[x.strip() for x in SENT_SPLIT.split(t) if x.strip()]
    return [x for x in s if len(x)>=25]

# ====== (1) عبارات مفتاحية (YAKE) ======
def yake_keywords(t: str, k: int = 260) -> List[str]:
    phrases = []
    seen = set()
    for n in [3, 2, 1]:
        try:
            ex = yake.KeywordExtractor(lan='ar', n=n, top=k)
            pairs = ex.extract_keywords(t)
        except Exception:
            pairs = []
        for w, _ in pairs:
            w = re2.sub(r"\s+", " ", w.strip())
            if not w or w in seen: 
                continue
            if re2.match(r"^[\p{P}\p{S}\d_]+$", w): 
                continue
            if 2 <= len(w) <= 40:
                phrases.append(w)
                seen.add(w)
    return phrases

def good_kw(kw:str)->bool:
    return kw and len(kw)>=2 and kw not in AR_STOP and not re2.match(r"^[\p{P}\p{S}\d_]+$", kw)

# ====== POS/NER اختياري ======
_HAS_CAMEL = False
try:
    from camel_tools.morphology.analyzer import Analyzer
    from camel_tools.ner import NERecognizer
    _HAS_CAMEL = True
    _AN = Analyzer.builtin_analyzer()
    _NER = NERecognizer.pretrained()
except Exception:
    _HAS_CAMEL = False

NER_TAGS = {"PER","LOC","ORG","MISC"}

def ar_pos(word: str) -> str:
    if not _HAS_CAMEL:
        if re2.match(r"^(في|على|الى|إلى|من|عن|حتى|ثم|بل|لكن|أو|و)$", word): return "PART"
        if re2.match(r"^[\p{N}]+$", word): return "NUM"
        if re2.search(r"(ة|ات|ون|ين|ان)$", word): return "NOUN"
        return "X"
    try:
        ana = _AN.analyze(word)
        if not ana: return "X"
        from collections import Counter
        pos_candidates = [a.get('pos','X') for a in ana]
        return Counter(pos_candidates).most_common(1)[0][0] if pos_candidates else "X"
    except Exception:
        return "X"

def is_named_entity(token: str) -> bool:
    if not _HAS_CAMEL:
        return False
    try:
        tag = _NER.predict_sentence([token])[0]
        return tag in NER_TAGS
    except Exception:
        return False

def is_clean_sentence(s: str) -> bool:
    if not (60 <= len(s) <= 240): return False
    if re2.search(r"https?://|www\.", s): return False
    if re2.search(r"\d{2,}", s): return False
    return True

def safe_keyword(k: str) -> bool:
    if not good_kw(k): return False
    if is_named_entity(k): return False
    if ar_pos(k) in {"PRON","PART"}: return False
    return True

# ====== Embeddings/Masking/Cross-Encoder (اختياري) ======
_EMB = None
def get_embedder():
    global _EMB
    if _EMB is None:
        try:
            from sentence_transformers import SentenceTransformer
            _EMB = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
        except Exception:
            _EMB = False
    return _EMB

def nearest_terms(target: str, pool: List[str], k: int = 24) -> List[Tuple[str, float]]:
    emb = get_embedder()
    if not emb:
        return []
    cand = [w for w in pool if w != target and len(w) >= 2 and not re2.match(r"^[\p{P}\p{S}\d_]+$", w)]
    if not cand:
        return []
    vecs = emb.encode([target] + cand, normalize_embeddings=True)
    t, C = vecs[0], vecs[1:]
    import numpy as np
    sims = (C @ t)
    idx = np.argsort(-sims)[:k]
    return [(cand[i], float(sims[i])) for i in idx]

_MLM = None
def get_masker():
    global _MLM
    if _MLM is None:
        try:
            from transformers import pipeline
            _MLM = pipeline("fill-mask", model="aubmindlab/bert-base-arabertv02")
        except Exception:
            _MLM = False
    return _MLM

def mlm_distractors(sentence_with_blank: str, correct: str, k: int = 18) -> List[str]:
    masker = get_masker()
    if not masker:
        return []
    masked = sentence_with_blank.replace("_____", masker.tokenizer.mask_token)
    try:
        outs = masker(masked, top_k=max(25, k+7))
        cands = []
        for o in outs:
            tok = o["token_str"].strip()
            if tok and tok != correct and len(tok) >= 2 and not re2.match(r"^[\p{P}\p{S}\d_]+$", tok):
                cands.append(tok)
        uniq, seen = [], set()
        for w in cands:
            if w not in seen:
                uniq.append(w); seen.add(w)
        return uniq[:k]
    except Exception:
        return []

_CE = None
def get_cross_encoder():
    global _CE
    if _CE is None:
        try:
            from sentence_transformers import CrossEncoder
            _CE = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
        except Exception:
            _CE = False
    return _CE

def rank_by_ce(sentence_with_blank: str, candidates: List[str]) -> List[str]:
    ce = get_cross_encoder()
    if not ce or not candidates:
        return candidates
    pairs = [(sentence_with_blank.replace("_____", c), c) for c in candidates]
    try:
        scores = ce.predict([p[0] for p in pairs])
        ranked = [c for _, c in sorted(zip(scores, [p[1] for p in pairs]), key=lambda x:-x[0])]
        return ranked
    except Exception:
        return candidates

# --------- أدوات مساعدة للمشتّتات ---------
def word_tokens(s: str) -> List[str]:
    s = norm_ar(s)
    return re2.findall(r"\p{L}+", s)

def token_set(s: str) -> set:
    return set([t for t in word_tokens(s) if t not in AR_STOP])

def jaccard(a: str, b: str) -> float:
    A, B = token_set(a), token_set(b)
    if not A or not B: return 0.0
    return len(A & B) / max(1, len(A | B))

def is_sub_or_super(a: str, b: str) -> bool:
    A, B = norm_ar(a), norm_ar(b)
    return (A in B) or (B in A)

def appears_as_long_fragment_in_sentence(w: str, sentence: str) -> bool:
    toks = word_tokens(w)
    if len(toks) < 3: 
        return False
    return re2.search(rf"(?<!\p{{L}}){re2.escape(norm_ar(w))}(?!\p{{L}})", norm_ar(sentence)) is not None

def choice_length_ok(w: str) -> bool:
    n = len(word_tokens(w))
    return 1 <= n <= 6

def paragraph_index_map(text: str, sentences: List[str]) -> dict:
    paras = [norm_ar(p) for p in re2.split(r"\n{2,}", text) if p.strip()]
    mapping = {}
    for i, s in enumerate(sentences):
        ns = norm_ar(s)
        pid = None
        for j, p in enumerate(paras):
            if ns and ns in p:
                pid = j; break
        mapping[s] = pid if pid is not None else -1
    return mapping

def looks_like_title_fragment(s: str) -> bool:
    return ":" in s and s.index(":") < max(10, len(s)//6)

def is_nouny_phrase(w: str) -> bool:
    toks = word_tokens(w)
    if not (1 <= len(toks) <= 4): return False
    if re2.search(r"(يفعل|تفعل|يشهد|تقوم|يمكن|قد|سوف)$", w): return False
    return True

def best_keyword_in_sentence(sentence: str, global_text: str) -> Optional[str]:
    if looks_like_title_fragment(sentence):
        parts = sentence.split(":", 1)
        sentence = parts[1] if len(parts) > 1 else sentence
    try:
        ex = yake.KeywordExtractor(lan='ar', n=3, top=24)
        pairs = ex.extract_keywords(sentence)
    except Exception:
        pairs = []
    cands = []
    for w, _ in pairs:
        w = re2.sub(r"\s+", " ", w.strip())
        if not w or not good_kw(w) or not safe_keyword(w): 
            continue
        if not is_nouny_phrase(w): 
            continue
        if not re2.search(rf"(?<!\p{{L}}){re2.escape(w)}(?!\p{{L}})", sentence):
            continue
        freq_weight = global_text.count(w)
        cands.append((w, len(w) + 0.7*freq_weight))
    if not cands:
        toks = [t for t in re2.findall(r"\p{L}+", sentence) if good_kw(t) and safe_keyword(t)]
        toks = [t for t in toks if is_nouny_phrase(t)]
        toks.sort(key=len, reverse=True)
        return toks[0] if toks else None
    cands.sort(key=lambda x: -x[1])
    return cands[0][0]

def similarity_caps(difficulty: str):
    if difficulty == "سهل":
        return 0.88
    if difficulty == "صعب":
        return 0.95
    return 0.92

def tokenize_ar(s: str) -> List[str]:
    s = norm_ar(s)
    toks = re2.findall(r"\p{L}+", s)
    return [t for t in toks if len(t) >= 2 and t not in AR_STOP]

def bm25_build(sentences: List[str]):
    if not _HAS_BM25 or not sentences:
        return None, []
    corpus_tokens = [tokenize_ar(s) for s in sentences]
    bm = BM25Okapi(corpus_tokens)
    return bm, corpus_tokens

def bm25_candidates(correct: str, sentences: List[str], bm, corpus_tokens, top: int = 20) -> List[str]:
    if not bm: return []
    q = tokenize_ar(correct)
    scores = bm.get_scores(q)
    idxs = sorted(range(len(scores)), key=lambda i: -scores[i])[:min(top, len(scores))]
    pool = set()
    for i in idxs:
        for tok in corpus_tokens[i]:
            if tok != correct and good_kw(tok):
                pool.add(tok)
    return list(pool)

def typo_like_variants(answer: str, k: int = 4) -> List[str]:
    """مشتّتات شكلية: تعريف/تنكير، ي/ى، ة/ه، حذف حرف."""
    a = norm_ar(answer)
    vars = set()
    if a.startswith("ال"):
        vars.add(a[2:])
    else:
        vars.add("ال" + a)
    vars.add(a.replace("ي", "ى"))
    vars.add(a.replace("ى", "ي"))
    vars.add(a.replace("ة", "ه"))
    vars.add(a.replace("ه", "ة"))
    if len(a) > 5:
        mid = len(a)//2
        vars.add(a[:mid] + a[mid+1:])
    out = [v for v in vars if v and norm_ar(v) != norm_ar(a)]
    return out[:k]

# ====== مشتّتات ذكية ======
def pos_compatible(a: str, b: str) -> bool:
    pa, pb = ar_pos(a), ar_pos(b)
    if "X" in (pa, pb): 
        return True
    return pa == pb

def length_close(a: str, b: str) -> bool:
    return abs(len(a) - len(b)) <= max(6, len(b)//2)

def smart_distractors(correct: str, phrase_pool: List[str], sentence: str, k: int = 3,
                      all_sentences: Optional[List[str]] = None, difficulty: str = "متوسط") -> List[str]:
    base: List[str] = []

    # (0) مشتّتات شكلية أولاً
    base.extend(typo_like_variants(correct, k=4))

    # (أ) جيران دلاليين
    base.extend([w for w,_ in nearest_terms(correct, phrase_pool, k=24)])

    # (ب) FILL-MASK
    for w in mlm_distractors(sentence.replace(correct, "_____"), correct, k=18):
        if w not in base:
            base.append(w)

    # (ج) BM25
    if all_sentences:
        bm, corp = bm25_build(all_sentences)
        for w in bm25_candidates(correct, all_sentences, bm, corp, top=18):
            if w not in base:
                base.append(w)

    # فلترة صارمة
    clean: List[str] = []
    for w in base:
        w = (w or "").strip()
        if not w or w == correct:
            continue
        if not choice_length_ok(w):
            continue
        if appears_as_long_fragment_in_sentence(w, sentence):
            continue
        if is_named_entity(w):
            continue
        if not pos_compatible(w, correct):
            continue
        if not length_close(w, correct):
            continue
        if is_sub_or_super(w, correct):
            continue
        if jaccard(w, correct) >= 0.5:
            continue
        clean.append(w)

    # ترتيب (اختياري) + فلتر قرب دلالي
    clean = rank_by_ce(sentence.replace(correct, "_____"), clean)[:max(k*4, k)]
    cap = similarity_caps(difficulty)
    try:
        emb = get_embedder()
        if emb and clean:
            vecs = emb.encode([correct] + clean, normalize_embeddings=True)
            c, others = vecs[0], vecs[1:]
            import numpy as np
            sims = others @ c
            filtered = [w for w, s in zip(clean, sims) if s < cap]
            if len(filtered) >= k:
                clean = filtered
    except Exception:
        pass

    # تجميع أخير
    out, seen = [], set()
    for w in clean:
        if w in seen: 
            continue
        seen.add(w); out.append(w)
        if len(out) >= k:
            break

    # تعويض إذا لزم
    if len(out) < k:
        extras = [w for w in phrase_pool 
                  if w not in out and w != correct and choice_length_ok(w) 
                  and not appears_as_long_fragment_in_sentence(w, sentence)
                  and not is_sub_or_super(w, correct)
                  and jaccard(w, correct) < 0.5]
        out.extend(extras[:(k-len(out))])
    if len(out) < k:
        out.extend([w for w in ["…"]*(k-len(out))])  # لن تُقبل لاحقًا إن لم نكمل 4 خيارات
    return out[:k]

# ====== mT5 (اختياري) ======
_MT5 = {"tok": None, "model": None, "ok": False}
def get_mt5():
    if _MT5["tok"] is not None or _MT5["model"] is not None or _MT5["ok"]:
        return _MT5["tok"], _MT5["model"], _MT5["ok"]
    try:
        from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
        _MT5["tok"] = AutoTokenizer.from_pretrained("google/mt5-small")
        _MT5["model"] = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
        _MT5["ok"] = True
    except Exception:
        _MT5["tok"] = None; _MT5["model"] = None; _MT5["ok"] = False
    return _MT5["tok"], _MT5["model"], _MT5["ok"]

def parse_json_block(s: str) -> Optional[dict]:
    try:
        return json.loads(s)
    except Exception:
        pass
    m = re2.search(r"\{.*\}", s, flags=re2.DOTALL)
    if m:
        try:
            return json.loads(m.group(0))
        except Exception:
            return None
    return None

def comp_prompt(sentence: str) -> str:
    return (
        "أنت منشئ أسئلة متعددة الخيارات باللغة العربية.\n"
        "من الجملة التالية، أنشئ سؤال فهم مباشر واحدًا مع أربع خيارات وإشارة للجواب الصحيح.\n"
        "أعد فقط JSON بهذا الشكل:\n"
        "{\n"
        "\"question\": \"...\",\n"
        "\"choices\": [\"...\",\"...\",\"...\",\"...\"],\n"
        "\"answer_index\": 0\n"
        "}\n\n"
        f"الجملة: {sentence}"
    )

def gen_one_comp_q(sentence: str, tok, model, max_new_tokens=128) -> Optional[MCQ]:
    try:
        import torch
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = model.to(device)
        inp = tok(comp_prompt(sentence), return_tensors="pt").to(device)
        out = model.generate(
            **inp,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=0.8,
            top_p=0.9,
            num_return_sequences=1,
            eos_token_id=tok.eos_token_id
        )
        text = tok.decode(out[0], skip_special_tokens=True)
        data = parse_json_block(text) or {}
        q = str(data.get("question","")).strip()
        choices = data.get("choices", [])
        ai = data.get("answer_index", 0)
        if not q or not isinstance(choices, list) or len(choices) < 4:
            return None
        choices = [str(c).strip() for c in choices][:4]
        ai = ai if isinstance(ai, int) and 0 <= ai < 4 else 0
        return MCQ(id=str(uuid.uuid4())[:8], question=q, choices=choices, answer_index=ai)
    except Exception:
        return None

def make_comp_mcqs(text: str, n: int = 6, difficulty: str = "متوسط") -> List[MCQ]:
    tok, model, ok = get_mt5()
    if not ok:
        return make_mcqs(text, n, difficulty=difficulty)

    sents_all = split_sents(text)
    sents = [s for s in sents_all if is_clean_sentence(s)] or sents_all[:]
    if not sents:
        return make_mcqs(text, n, difficulty=difficulty)

    # دمج جمل قصيرة لمقاطع مفيدة
    def make_chunks(sents, max_len=220):
        chunks = []
        i = 0
        while i < len(sents):
            cur = sents[i]
            j = i + 1
            while j < len(sents) and len(cur) + 1 + len(sents[j]) <= max_len:
                cur = cur + " " + sents[j]
                j += 1
            chunks.append(cur)
            i = j
        return chunks

    candidates = sents[:] + make_chunks(sents, max_len=220)
    random.shuffle(candidates)

    items: List[MCQ] = []
    tried = 0
    for s in candidates:
        if len(items) >= n: break
        mcq = gen_one_comp_q(s, tok, model)
        tried += 1
        if mcq:
            q = re2.sub(r"\s+", " ", mcq.question).strip()
            if not (12 <= len(q) <= 220): 
                continue
            choices = [re2.sub(r"\s+", " ", c).strip() for c in mcq.choices]
            seen=set(); clean=[]
            for c in choices:
                if c and c not in seen:
                    seen.add(c); clean.append(c)
            clean = (clean + ["…","…","…","…"])[:4]
            ai = mcq.answer_index if isinstance(mcq.answer_index,int) and 0<=mcq.answer_index<4 else 0
            items.append(MCQ(id=str(uuid.uuid4())[:8], question=q, choices=clean, answer_index=ai))
        if tried >= n * 12:
            break

    if not items:
        return make_mcqs(text, n, difficulty=difficulty)
    return items[:n]

# ------------------ مُولّد أسئلة "فراغ" (نهائي) ------------------
def make_mcqs(text: str, n: int = 6, difficulty: str = "متوسط") -> List[MCQ]:
    all_sents = split_sents(text)
    sents = [s for s in all_sents if is_clean_sentence(s)] or all_sents[:]
    if not sents:
        raise ValueError("النص قصير أو غير صالح.")

    keyphrases = yake_keywords(text, k=260)
    keyphrases = [kp for kp in keyphrases if safe_keyword(kp) and 2 <= len(kp) <= 40]

    sent_for: dict = {}
    for s in sents:
        for kp in keyphrases:
            if kp in sent_for:
                continue
            if re2.search(rf"(?<!\p{{L}}){re2.escape(kp)}(?!\p{{L}})", s):
                sent_for[kp] = s
        if len(sent_for) >= n * 5:
            break

    para_map = paragraph_index_map(text, sents)
    used_sentences: set = set()
    items: List[MCQ] = []

    MAX_PER_PARA = 2
    para_count: dict = {}

    def add_item_from_pair(sentence: str, kp: str) -> bool:
        nonlocal items, used_sentences, para_count
        pid = para_map.get(sentence, -1)
        if para_count.get(pid, 0) >= MAX_PER_PARA:
            return False
        if not re2.search(rf"(?<!\p{{L}}){re2.escape(kp)}(?!\p{{L}})", sentence):
            return False
        q = re2.sub(rf"(?<!\p{{L}}){re2.escape(kp)}(?!\p{{L}})", "_____", sentence, count=1)
        pool = [x for x in keyphrases if x != kp] or keyphrases[:]
        ch = smart_distractors(kp, pool, sentence, k=3,
                               all_sentences=all_sents, difficulty=difficulty) + [kp]

        choices, seen = [], set()
        for c in ch:
            c = (c or "").strip()
            if not c or c in seen:
                continue
            if not choice_length_ok(c):
                continue
            if appears_as_long_fragment_in_sentence(c, sentence):
                continue
            if is_sub_or_super(c, kp) or jaccard(c, kp) >= 0.5:
                continue
            seen.add(c); choices.append(c)

        if kp not in choices:
            choices.append(kp); seen.add(kp)
        if len(choices) < 4:
            return False

        choices = choices[:4]
        random.shuffle(choices)
        ans = choices.index(kp)

        items.append(MCQ(id=str(uuid.uuid4())[:8], question=q, choices=choices, answer_index=ans))
        used_sentences.add(sentence)
        para_count[pid] = para_count.get(pid, 0) + 1
        return True

    # تمريرة أولى: تنويع على الفقرات
    for kp in sorted(sent_for.keys(), key=lambda x: (-len(x), x)):
        if len(items) >= n: break
        s = sent_for[kp]
        if s in used_sentences: 
            continue
        _ = add_item_from_pair(s, kp)

    def fill_from_sentences(candidates: List[str]):
        for s in candidates:
            if len(items) >= n: break
            if s in used_sentences: 
                continue
            kp = None
            for kpp, ss in sent_for.items():
                if ss == s:
                    kp = kpp; break
            if kp is None:
                kp = best_keyword_in_sentence(s, text)
            if not kp:
                continue
            _ = add_item_from_pair(s, kp)

    if len(items) < n:
        remaining_new_para = [s for s in sents if para_count.get(para_map.get(s, -1), 0) < MAX_PER_PARA]
        fill_from_sentences(remaining_new_para)
    if len(items) < n:
        leftovers = [s for s in sents if s not in used_sentences]
        fill_from_sentences(leftovers)

    if not items:
        raise RuntimeError("تعذّر توليد أسئلة.")
    return items[:n]

# ------------------ تحويل إلى سجلات العرض ------------------
def clean_option_text(t: str) -> str:
    t = (t or "").strip()
    t = re2.sub(AR_DIAC, "", t)
    t = re2.sub(r"\s+", " ", t)
    t = re2.sub(r"^[\p{P}\p{S}_-]+|[\p{P}\p{S}_-]+$", "", t)
    # قصّ لطول معقول
    t = re2.sub(r"^(.{,60})(?:\s.*)?$", r"\1", t)
    return t or "…"

def to_records(items:List[MCQ])->List[dict]:
    recs=[]
    for it in items:
        opts=[]
        used=set()
        for i,lbl in enumerate(["A","B","C","D"]):
            txt=(it.choices[i] if i<len(it.choices) else "…")
            txt=clean_option_text(txt.replace(",", "،").replace("?", "؟").replace(";", "؛"))
            if txt in used:
                txt = f"{txt}{i+1}"
            used.add(txt)
            opts.append({"id":lbl,"text":txt,"is_correct":(i==it.answer_index)})
        recs.append({"id":it.id,"question":it.question.strip(),"options":opts})
    return recs

# ------------------ صفحة الأسئلة (HTML فقط) ------------------
def render_quiz_html(records: List[dict]) -> str:
    parts=[]
    for i, rec in enumerate(records, start=1):
        qid  = rec["id"]
        qtxt = rec["question"]
        cor  = next((o["id"] for o in rec["options"] if o["is_correct"]), "")
        opts_html=[]
        for o in rec["options"]:
            lid, txt = o["id"], o["text"]
            opts_html.append(f"""
                <label class="opt" data-letter="{lid}">
                    <input type="radio" name="q_{qid}" value="{lid}">
                    <span class="opt-letter">{lid}</span>
                    <span class="opt-text">{txt}</span>
                </label>
            """)
        parts.append(f"""
        <div class="q-card" data-qid="{qid}" data-correct="{cor}">
            <div class="q-header">
                <div class="q-title">السؤال {i}</div>
                <div class="q-badge" id="b_{qid}" hidden></div>
            </div>
            <div class="q-text">{qtxt}</div>
            <div class="opts">{''.join(opts_html)}</div>
            <div class="q-actions">
                <button class="q-submit">Submit</button>
                <span class="q-note" id="n_{qid}"></span>
            </div>
        </div>
        """)
    return f"""<div id="quiz" class="quiz-wrap">{''.join(parts)}</div>"""

# ------------------ بناء الامتحان وتبديل الصفحات ------------------
def build_quiz(text_area, file_path, n, model_id, zoom, mode, difficulty):
    text_area = (text_area or "").strip()
    if not text_area and not file_path:
        return "", gr.update(visible=True), gr.update(visible=False), "🛈 الصق نصًا أو ارفع ملفًا أولًا."
    raw = text_area if text_area else file_to_text(file_path, model_id=model_id, zoom=float(zoom))[0]
    cleaned = postprocess(raw)

    used_mode = mode
    try:
        if mode == "فهم مباشر":
            tok, model, ok = get_mt5()
            if ok:
                items = make_comp_mcqs(cleaned, n=int(n), difficulty=difficulty)
            else:
                items = make_mcqs(cleaned, n=int(n), difficulty=difficulty)
                used_mode = "فراغ (fallback)"
        else:
            items = make_mcqs(cleaned, n=int(n), difficulty=difficulty)
    except Exception:
        items = make_mcqs(cleaned, n=int(n), difficulty=difficulty)
        used_mode = "فراغ (fallback)"

    recs = to_records(items)
    warn = f"نمط مُستخدَم: **{used_mode}** — عدد الأسئلة: {len(items)}"
    return render_quiz_html(recs), gr.update(visible=False), gr.update(visible=True), warn

# ------------------ CSS ------------------
CSS = """
:root{
  --bg:#0e0e11; --panel:#15161a; --card:#1a1b20; --muted:#a7b0be;
  --text:#f6f7fb; --accent:#6ee7b7; --accent2:#34d399; --danger:#ef4444; --border:#262833;
}
body{direction:rtl; font-family:system-ui,'Cairo','IBM Plex Arabic',sans-serif; background:var(--bg);}
.gradio-container{max-width:980px;margin:0 auto;padding:12px 12px 40px;}
h2.top{color:#eaeaf2;margin:6px 0 16px}

/* صفحة الإدخال ثابتة الارتفاع ولا تتغير أبعادها */
.input-panel{background:var(--panel);border:1px solid var(--border);border-radius:14px;padding:16px;
  box-shadow:0 16px 38px rgba(0,0,0,.35); min-height:360px; display:flex; flex-direction:column; gap:12px;}
.small{opacity:.9;color:#d9dee8}

/* إخفاء معاينة الملف */
[data-testid="file"] .file-preview, [data-testid="file"] .file-preview * { display:none !important; }
[data-testid="file"] .grid-wrap { display:block !important; }
.upload-like{border:2px dashed #3b3f52;background:#121318;border-radius:12px;padding:12px;color:#cfd5e3;min-height:90px}

.button-primary>button{background:linear-gradient(180deg,var(--accent),var(--accent2));border:none;color:#0b0d10;font-weight:800}
.button-primary>button:hover{filter:brightness(.95)}
textarea{min-height:120px}

/* صفحة الأسئلة */
.q-card{background:var(--card);border:1px solid var(--border);border-radius:14px;padding:14px;margin:12px 0}
.q-header{display:flex;gap:10px;align-items:center;justify-content:space-between;margin-bottom:6px}
.q-title{color:#eaeaf2;font-weight:800}
.q-badge{padding:8px 12px;border-radius:10px;font-weight:700}
.q-badge.ok{background:#083a2a;color:#b6f4db;border:1px solid #145b44}
.q-badge.err{background:#3a0d14;color:#ffd1d6;border:1px solid #6a1e2b}

.q-text{color:#eaeaf2;font-size:1.06rem;line-height:1.8;margin:8px 0 12px}
.opts{display:flex;flex-direction:column;gap:8px}
.opt{display:flex;gap:10px;align-items:center;background:#14161c;border:1px solid #2a2d3a;border-radius:12px;padding:10px;transition:background .15s,border-color .15s}
.opt input{accent-color:var(--accent2)}
.opt-letter{display:inline-flex;width:28px;height:28px;border-radius:8px;background:#0f1116;border:1px solid #2a2d3a;align-items:center;justify-content:center;font-weight:800;color:#dfe6f7}
.opt-text{color:#eaeaf2}
.opt.ok{background:#0f2f22;border-color:#1b6a52}
.opt.err{background:#3a0d14;border-color:#6a1e2b}

.q-actions{display:flex;gap:10px;align-items:center;margin-top:10px}
.q-actions .q-submit{
  background:#2dd4bf;border:none;color:#0b0د10;font-weight:800;border-radius:10px;padding:8px 14px;cursor:pointer;
}
.q-actions .q-submit:disabled{opacity:.5;cursor:not-allowed}
.q-note{color:#ffd1d6}
.q-note.warn{color:#ffd1d6}
"""

# ------------------ JS: ربط Submit + إبراز الصح ------------------
ATTACH_LISTENERS_JS = """
() => {
  if (window.__q_submit_bound_multi2) { return 'already'; }
  window.__q_submit_bound_multi2 = true;

  document.addEventListener('click', function(e){
    if (!e.target || !e.target.classList || !e.target.classList.contains('q-submit')) return;

    const card    = e.target.closest('.q-card');
    if (!card) return;

    const qid      = card.getAttribute('data-qid');
    const correct  = card.getAttribute('data-correct');
    const note     = document.getElementById('n_'+qid);
    const badge    = document.getElementById('b_'+qid);
    const chosen   = card.querySelector('input[type="radio"]:checked');

    if (!chosen) {
      if (note){ note.textContent = 'اختر إجابة أولاً'; note.className='q-note warn'; }
      return;
    }

    const chosenLabel = chosen.closest('.opt');

    if (chosen.value === correct) {
      chosenLabel.classList.add('ok');
      if (badge){ badge.hidden=false; badge.className='q-badge ok'; badge.textContent='Correct!'; }
      card.querySelectorAll('input[type="radio"]').forEach(i => i.disabled = true);
      e.target.disabled = true;
      if (note) note.textContent = '';

      const qNode = card.querySelector('.q-text');
      if (qNode){
        const full = qNode.textContent || qNode.innerText || '';
        const correctText = [...card.querySelectorAll('.opt')].find(o =>
          o.querySelector('input').value === correct
        )?.querySelector('.opt-text')?.textContent || '';
        if (full && correctText && full.includes('_____')){
          const highlighted = full.replace('_____', `<mark style="background:#2dd4bf22;border:1px solid #2dd4bf55;border-radius:6px;padding:0 4px">${correctText}</mark>`);
          qNode.innerHTML = highlighted;
        }
      }
      return;
    }

    chosenLabel.classList.add('err');
    if (badge){ badge.hidden=false; badge.className='q-badge err'; badge.textContent='Incorrect.'; }
    if (note) note.textContent = '';
  });

  return 'wired-multi2';
}
"""

# ------------------ واجهة Gradio ------------------
with gr.Blocks(title="Question Generator", css=CSS) as demo:
    gr.Markdown("<h2 class='top'>Question Generator</h2>")

    page1 = gr.Group(visible=True, elem_classes=["input-panel"])
    with page1:
        gr.Markdown("اختر **أحد** الخيارين ثم اضغط الزر.", elem_classes=["small"])
        text_area = gr.Textbox(lines=6, placeholder="ألصق نصك هنا...", label="لصق نص")
        file_comp = gr.File(label="أو ارفع ملف (PDF / TXT)", file_count="single",
                            file_types=[".pdf",".txt"], type="filepath", elem_classes=["upload-like"])
        num_q = gr.Slider(4, 20, value=DEFAULT_NUM_QUESTIONS, step=1, label="عدد الأسئلة")

        mode_radio = gr.Radio(choices=QUESTION_MODES, value="فراغ", label="نوع السؤال")
        difficulty_radio = gr.Radio(choices=DIFFICULTY_MODES, value="متوسط", label="درجة الصعوبة")

        with gr.Accordion("خيارات PDF المصوّر (اختياري)", open=False):
            trocr_model = gr.Dropdown(
                choices=[
                    "microsoft/trocr-base-printed",
                    "microsoft/trocr-large-printed",
                    "microsoft/trocr-base-handwritten",
                    "microsoft/trocr-large-handwritten",
                ],
                value=DEFAULT_TROCR_MODEL, label="نموذج TrOCR"
            )
            trocr_zoom = gr.Slider(2.0, 3.5, value=DEFAULT_TROCR_ZOOM, step=0.1, label="Zoom OCR")

        btn_build = gr.Button("generate quistion", elem_classes=["button-primary"])
        warn = gr.Markdown("", elem_classes=["small"])

    page2 = gr.Group(visible=False)
    with page2:
        quiz_html = gr.HTML("")
        js_wired  = gr.Textbox(visible=False)

    btn_build.click(
        build_quiz,
        inputs=[text_area, file_comp, num_q, trocr_model, trocr_zoom, mode_radio, difficulty_radio],
        outputs=[quiz_html, page1, page2, warn]
    ).then(
        None, inputs=None, outputs=[js_wired], js=ATTACH_LISTENERS_JS
    )

if __name__ == "__main__":
    demo.queue().launch()