Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import gc
|
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
MODEL_ID = "ali-vilab/i2vgen-xl"
|
| 9 |
-
# Turbo LoRA für SDXL (funktioniert mit I2VGen-XL)
|
| 10 |
LORA_ID = "latent-consistency/lcm-lora-sdxl"
|
| 11 |
|
| 12 |
pipe = None
|
|
@@ -14,36 +13,27 @@ pipe = None
|
|
| 14 |
def load_model_safely():
|
| 15 |
global pipe
|
| 16 |
if pipe is not None:
|
| 17 |
-
return pipe, "Modell ist
|
| 18 |
|
| 19 |
log = "System Start...\n"
|
| 20 |
print("Lade Modell...")
|
| 21 |
|
| 22 |
try:
|
| 23 |
-
# 1. Pipeline laden (Standard float32 für CPU)
|
| 24 |
pipe = I2VGenXLPipeline.from_pretrained(
|
| 25 |
MODEL_ID,
|
| 26 |
torch_dtype=torch.float32,
|
| 27 |
variant="fp16"
|
| 28 |
)
|
| 29 |
|
| 30 |
-
# 2. LCM TURBO ZÜNDEN
|
| 31 |
log += "🚀 Lade LCM Turbo LoRA...\n"
|
| 32 |
try:
|
| 33 |
-
# LoRA laden
|
| 34 |
pipe.load_lora_weights(LORA_ID)
|
| 35 |
-
|
| 36 |
-
# WICHTIG: fuse_lora() verschmilzt die LoRA mit dem Modell.
|
| 37 |
-
# Das spart RAM, weil wir keine separaten Gewichte halten müssen.
|
| 38 |
pipe.fuse_lora()
|
| 39 |
-
|
| 40 |
-
# Scheduler auf LCM ändern (das macht es schnell)
|
| 41 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 42 |
-
log += "✅ LCM Turbo ist AKTIV
|
| 43 |
except Exception as e:
|
| 44 |
-
log += f"⚠️ Turbo Fehler: {e}\n
|
| 45 |
|
| 46 |
-
# 3. RAM sparen (Offloading)
|
| 47 |
try:
|
| 48 |
pipe.enable_model_cpu_offload()
|
| 49 |
log += "✅ Model Offloading aktiv.\n"
|
|
@@ -52,7 +42,7 @@ def load_model_safely():
|
|
| 52 |
pipe.enable_sequential_cpu_offload()
|
| 53 |
log += "✅ Sequential Offloading aktiv.\n"
|
| 54 |
except:
|
| 55 |
-
log += "❌ RAM WARNUNG: Kein Offloading
|
| 56 |
|
| 57 |
pipe.enable_vae_slicing()
|
| 58 |
pipe.enable_vae_tiling()
|
|
@@ -62,14 +52,17 @@ def load_model_safely():
|
|
| 62 |
except Exception as e:
|
| 63 |
return None, f"Absturz beim Laden: {e}\n{traceback.format_exc()}"
|
| 64 |
|
| 65 |
-
|
|
|
|
| 66 |
global pipe
|
| 67 |
log_messages = ""
|
| 68 |
|
| 69 |
if image_in is None:
|
| 70 |
return None, "Kein Bild!"
|
| 71 |
|
| 72 |
-
#
|
|
|
|
|
|
|
| 73 |
if pipe is None:
|
| 74 |
model, msg = load_model_safely()
|
| 75 |
log_messages += msg
|
|
@@ -81,18 +74,24 @@ def generate_video(image_in, prompt, negative_prompt):
|
|
| 81 |
gc.collect()
|
| 82 |
|
| 83 |
try:
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
target_size = 448 # 448px ist das Minimum für I2VGen
|
| 88 |
|
| 89 |
-
log_messages += f"
|
| 90 |
|
| 91 |
-
# Bild skalieren
|
| 92 |
image_in = image_in.resize((target_size, target_size))
|
| 93 |
-
|
| 94 |
generator = torch.manual_seed(42)
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
output = pipe(
|
| 97 |
prompt=prompt,
|
| 98 |
image=image_in,
|
|
@@ -102,7 +101,8 @@ def generate_video(image_in, prompt, negative_prompt):
|
|
| 102 |
guidance_scale=guidance,
|
| 103 |
height=target_size,
|
| 104 |
width=target_size,
|
| 105 |
-
generator=generator
|
|
|
|
| 106 |
).frames[0]
|
| 107 |
|
| 108 |
video_path = "turbo_output.mp4"
|
|
@@ -112,21 +112,18 @@ def generate_video(image_in, prompt, negative_prompt):
|
|
| 112 |
return video_path, log_messages
|
| 113 |
|
| 114 |
except Exception as e:
|
| 115 |
-
|
| 116 |
-
if "Out of memory" in err or "Killed" in err:
|
| 117 |
-
return None, log_messages + "\n❌ RAM ABSTURZ: Die LoRA war der Tropfen zu viel für die 16GB."
|
| 118 |
-
return None, log_messages + f"\n❌ Fehler: {err}"
|
| 119 |
|
| 120 |
with gr.Blocks() as demo:
|
| 121 |
gr.Markdown("# I2VGen-XL ⚡ LCM TURBO")
|
| 122 |
-
gr.Markdown("
|
| 123 |
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column():
|
| 126 |
img = gr.Image(type="pil", label="Bild")
|
| 127 |
txt = gr.Textbox(label="Prompt", value="fireworks in the sky")
|
| 128 |
neg = gr.Textbox(value="distortion, blurry", label="Negative")
|
| 129 |
-
btn = gr.Button("Turbo Start
|
| 130 |
|
| 131 |
with gr.Row():
|
| 132 |
vid = gr.Video(label="Video")
|
|
|
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
MODEL_ID = "ali-vilab/i2vgen-xl"
|
|
|
|
| 9 |
LORA_ID = "latent-consistency/lcm-lora-sdxl"
|
| 10 |
|
| 11 |
pipe = None
|
|
|
|
| 13 |
def load_model_safely():
|
| 14 |
global pipe
|
| 15 |
if pipe is not None:
|
| 16 |
+
return pipe, "Modell ist bereit."
|
| 17 |
|
| 18 |
log = "System Start...\n"
|
| 19 |
print("Lade Modell...")
|
| 20 |
|
| 21 |
try:
|
|
|
|
| 22 |
pipe = I2VGenXLPipeline.from_pretrained(
|
| 23 |
MODEL_ID,
|
| 24 |
torch_dtype=torch.float32,
|
| 25 |
variant="fp16"
|
| 26 |
)
|
| 27 |
|
|
|
|
| 28 |
log += "🚀 Lade LCM Turbo LoRA...\n"
|
| 29 |
try:
|
|
|
|
| 30 |
pipe.load_lora_weights(LORA_ID)
|
|
|
|
|
|
|
|
|
|
| 31 |
pipe.fuse_lora()
|
|
|
|
|
|
|
| 32 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 33 |
+
log += "✅ LCM Turbo ist AKTIV!\n"
|
| 34 |
except Exception as e:
|
| 35 |
+
log += f"⚠️ Turbo Fehler: {e}\n"
|
| 36 |
|
|
|
|
| 37 |
try:
|
| 38 |
pipe.enable_model_cpu_offload()
|
| 39 |
log += "✅ Model Offloading aktiv.\n"
|
|
|
|
| 42 |
pipe.enable_sequential_cpu_offload()
|
| 43 |
log += "✅ Sequential Offloading aktiv.\n"
|
| 44 |
except:
|
| 45 |
+
log += "❌ RAM WARNUNG: Kein Offloading.\n"
|
| 46 |
|
| 47 |
pipe.enable_vae_slicing()
|
| 48 |
pipe.enable_vae_tiling()
|
|
|
|
| 52 |
except Exception as e:
|
| 53 |
return None, f"Absturz beim Laden: {e}\n{traceback.format_exc()}"
|
| 54 |
|
| 55 |
+
# HIER IST DIE MAGIE: Das Argument "progress=gr.Progress()"
|
| 56 |
+
def generate_video(image_in, prompt, negative_prompt, progress=gr.Progress()):
|
| 57 |
global pipe
|
| 58 |
log_messages = ""
|
| 59 |
|
| 60 |
if image_in is None:
|
| 61 |
return None, "Kein Bild!"
|
| 62 |
|
| 63 |
+
# Initialisierung des Balkens
|
| 64 |
+
progress(0, desc="Lade Modell (kann dauern)...")
|
| 65 |
+
|
| 66 |
if pipe is None:
|
| 67 |
model, msg = load_model_safely()
|
| 68 |
log_messages += msg
|
|
|
|
| 74 |
gc.collect()
|
| 75 |
|
| 76 |
try:
|
| 77 |
+
steps = 6
|
| 78 |
+
guidance = 1.2
|
| 79 |
+
target_size = 448
|
|
|
|
| 80 |
|
| 81 |
+
log_messages += f"Starte Generierung ({steps} Steps)...\n"
|
| 82 |
|
|
|
|
| 83 |
image_in = image_in.resize((target_size, target_size))
|
|
|
|
| 84 |
generator = torch.manual_seed(42)
|
| 85 |
|
| 86 |
+
# --- DER FORTSCHRITTS-SPION ---
|
| 87 |
+
# Diese Funktion wird NACH JEDEM STEP aufgerufen
|
| 88 |
+
def callback_fn(pipe, step_index, timestep, callback_kwargs):
|
| 89 |
+
current = step_index + 1
|
| 90 |
+
# Aktualisiert den Balken oben im Bild
|
| 91 |
+
progress((current, steps), desc=f"Step {current} von {steps} fertig...")
|
| 92 |
+
return callback_kwargs
|
| 93 |
+
# ------------------------------
|
| 94 |
+
|
| 95 |
output = pipe(
|
| 96 |
prompt=prompt,
|
| 97 |
image=image_in,
|
|
|
|
| 101 |
guidance_scale=guidance,
|
| 102 |
height=target_size,
|
| 103 |
width=target_size,
|
| 104 |
+
generator=generator,
|
| 105 |
+
callback_on_step_end=callback_fn # Hier binden wir den Spion ein
|
| 106 |
).frames[0]
|
| 107 |
|
| 108 |
video_path = "turbo_output.mp4"
|
|
|
|
| 112 |
return video_path, log_messages
|
| 113 |
|
| 114 |
except Exception as e:
|
| 115 |
+
return None, log_messages + f"\n❌ Fehler: {e}"
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
with gr.Blocks() as demo:
|
| 118 |
gr.Markdown("# I2VGen-XL ⚡ LCM TURBO")
|
| 119 |
+
gr.Markdown("Jetzt mit Live-Fortschrittsanzeige!")
|
| 120 |
|
| 121 |
with gr.Row():
|
| 122 |
with gr.Column():
|
| 123 |
img = gr.Image(type="pil", label="Bild")
|
| 124 |
txt = gr.Textbox(label="Prompt", value="fireworks in the sky")
|
| 125 |
neg = gr.Textbox(value="distortion, blurry", label="Negative")
|
| 126 |
+
btn = gr.Button("Turbo Start")
|
| 127 |
|
| 128 |
with gr.Row():
|
| 129 |
vid = gr.Video(label="Video")
|