Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import I2VGenXLPipeline
|
| 4 |
from diffusers.utils import export_to_video
|
| 5 |
import gc
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
MODEL_ID = "ali-vilab/i2vgen-xl"
|
|
|
|
|
|
|
| 9 |
pipe = None
|
| 10 |
|
| 11 |
def load_model_safely():
|
|
@@ -13,27 +15,39 @@ def load_model_safely():
|
|
| 13 |
if pipe is not None:
|
| 14 |
return pipe, "Modell bereits geladen."
|
| 15 |
|
| 16 |
-
log = "
|
| 17 |
|
| 18 |
try:
|
| 19 |
-
#
|
| 20 |
pipe = I2VGenXLPipeline.from_pretrained(
|
| 21 |
MODEL_ID,
|
| 22 |
torch_dtype=torch.float32,
|
| 23 |
variant="fp16"
|
| 24 |
)
|
| 25 |
|
| 26 |
-
#
|
|
|
|
| 27 |
try:
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
except Exception as e:
|
| 31 |
-
log += f"⚠️
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
try:
|
| 33 |
pipe.enable_sequential_cpu_offload()
|
| 34 |
-
log += "✅
|
| 35 |
except:
|
| 36 |
-
log += "❌
|
| 37 |
|
| 38 |
pipe.enable_vae_slicing()
|
| 39 |
pipe.enable_vae_tiling()
|
|
@@ -43,14 +57,13 @@ def load_model_safely():
|
|
| 43 |
except Exception as e:
|
| 44 |
return None, f"Absturz beim Laden: {e}"
|
| 45 |
|
| 46 |
-
def generate_video(image_in, prompt, negative_prompt
|
| 47 |
global pipe
|
| 48 |
log_messages = ""
|
| 49 |
|
| 50 |
if image_in is None:
|
| 51 |
return None, "Kein Bild!"
|
| 52 |
|
| 53 |
-
# Modell laden
|
| 54 |
if pipe is None:
|
| 55 |
model, msg = load_model_safely()
|
| 56 |
log_messages += msg
|
|
@@ -62,14 +75,14 @@ def generate_video(image_in, prompt, negative_prompt, steps):
|
|
| 62 |
gc.collect()
|
| 63 |
|
| 64 |
try:
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
|
| 69 |
-
log_messages += f"
|
| 70 |
-
image_in = image_in.resize((target_size, target_size))
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
generator = torch.manual_seed(42)
|
| 75 |
|
|
@@ -79,41 +92,36 @@ def generate_video(image_in, prompt, negative_prompt, steps):
|
|
| 79 |
negative_prompt=negative_prompt,
|
| 80 |
num_frames=16,
|
| 81 |
num_inference_steps=steps,
|
| 82 |
-
guidance_scale=
|
| 83 |
height=target_size,
|
| 84 |
width=target_size,
|
| 85 |
generator=generator
|
| 86 |
).frames[0]
|
| 87 |
|
| 88 |
-
video_path = "
|
| 89 |
export_to_video(output, video_path, fps=8)
|
| 90 |
|
| 91 |
log_messages += "✅ FERTIG!"
|
| 92 |
return video_path, log_messages
|
| 93 |
|
| 94 |
except Exception as e:
|
| 95 |
-
|
| 96 |
-
if "Out of memory" in err or "Killed" in err:
|
| 97 |
-
return None, log_messages + "\n❌ RAM VOLL. Das 16GB Limit verhindert diese Auflösung."
|
| 98 |
-
return None, log_messages + f"\n❌ Fehler: {err}"
|
| 99 |
|
| 100 |
-
# Interface
|
| 101 |
with gr.Blocks() as demo:
|
| 102 |
-
gr.Markdown("# I2VGen-XL (
|
| 103 |
-
gr.Markdown("
|
| 104 |
|
| 105 |
with gr.Row():
|
| 106 |
with gr.Column():
|
| 107 |
img = gr.Image(type="pil", label="Bild")
|
| 108 |
-
txt = gr.Textbox(label="Prompt", value="
|
| 109 |
neg = gr.Textbox(value="distortion, blurry", label="Negative")
|
| 110 |
-
|
| 111 |
-
btn = gr.Button("Starten")
|
| 112 |
|
| 113 |
with gr.Row():
|
| 114 |
vid = gr.Video(label="Video")
|
| 115 |
-
logs = gr.Textbox(label="
|
| 116 |
|
| 117 |
-
btn.click(generate_video, [img, txt, neg
|
| 118 |
|
| 119 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import I2VGenXLPipeline, LCMScheduler
|
| 4 |
from diffusers.utils import export_to_video
|
| 5 |
import gc
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
MODEL_ID = "ali-vilab/i2vgen-xl"
|
| 9 |
+
LORA_ID = "latent-consistency/lcm-lora-sdxl" # Die Turbo-Impfung
|
| 10 |
+
|
| 11 |
pipe = None
|
| 12 |
|
| 13 |
def load_model_safely():
|
|
|
|
| 15 |
if pipe is not None:
|
| 16 |
return pipe, "Modell bereits geladen."
|
| 17 |
|
| 18 |
+
log = "Lade Modell...\n"
|
| 19 |
|
| 20 |
try:
|
| 21 |
+
# 1. Basis Modell laden
|
| 22 |
pipe = I2VGenXLPipeline.from_pretrained(
|
| 23 |
MODEL_ID,
|
| 24 |
torch_dtype=torch.float32,
|
| 25 |
variant="fp16"
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# 2. TURBO (LCM) LADEN
|
| 29 |
+
log += "💉 Injiziere LCM Turbo LoRA...\n"
|
| 30 |
try:
|
| 31 |
+
# Wir laden den Adapter. Das braucht etwas RAM!
|
| 32 |
+
pipe.load_lora_weights(LORA_ID, adapter_name="lcm")
|
| 33 |
+
pipe.fuse_lora() # Verschmilzt LoRA mit Modell für Speed
|
| 34 |
+
|
| 35 |
+
# WICHTIG: Scheduler auf LCM ändern
|
| 36 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 37 |
+
log += "✅ Turbo aktiviert (LCM Scheduler & LoRA geladen).\n"
|
| 38 |
except Exception as e:
|
| 39 |
+
log += f"⚠️ Turbo fehlgeschlagen (RAM voll?): {e}\nWir machen langsam weiter.\n"
|
| 40 |
+
|
| 41 |
+
# 3. Speicher Optimierung
|
| 42 |
+
try:
|
| 43 |
+
pipe.enable_model_cpu_offload()
|
| 44 |
+
log += "✅ Model Offloading aktiv.\n"
|
| 45 |
+
except:
|
| 46 |
try:
|
| 47 |
pipe.enable_sequential_cpu_offload()
|
| 48 |
+
log += "✅ Sequential Offloading aktiv.\n"
|
| 49 |
except:
|
| 50 |
+
log += "❌ RAM WARNUNG: Kein Offloading möglich.\n"
|
| 51 |
|
| 52 |
pipe.enable_vae_slicing()
|
| 53 |
pipe.enable_vae_tiling()
|
|
|
|
| 57 |
except Exception as e:
|
| 58 |
return None, f"Absturz beim Laden: {e}"
|
| 59 |
|
| 60 |
+
def generate_video(image_in, prompt, negative_prompt):
|
| 61 |
global pipe
|
| 62 |
log_messages = ""
|
| 63 |
|
| 64 |
if image_in is None:
|
| 65 |
return None, "Kein Bild!"
|
| 66 |
|
|
|
|
| 67 |
if pipe is None:
|
| 68 |
model, msg = load_model_safely()
|
| 69 |
log_messages += msg
|
|
|
|
| 75 |
gc.collect()
|
| 76 |
|
| 77 |
try:
|
| 78 |
+
# TURBO SETUP:
|
| 79 |
+
target_size = 448 # Wir hoffen, dass 448 mit LoRA noch passt
|
| 80 |
+
steps = 6 # LCM braucht nur 4-8 Steps!
|
| 81 |
+
guidance = 1.5 # LCM braucht niedrigen Guidance Scale (1.0 - 2.0)
|
| 82 |
|
| 83 |
+
log_messages += f"Generiere Turbo-Video (Nur {steps} Steps!)...\n"
|
|
|
|
| 84 |
|
| 85 |
+
image_in = image_in.resize((target_size, target_size))
|
| 86 |
|
| 87 |
generator = torch.manual_seed(42)
|
| 88 |
|
|
|
|
| 92 |
negative_prompt=negative_prompt,
|
| 93 |
num_frames=16,
|
| 94 |
num_inference_steps=steps,
|
| 95 |
+
guidance_scale=guidance,
|
| 96 |
height=target_size,
|
| 97 |
width=target_size,
|
| 98 |
generator=generator
|
| 99 |
).frames[0]
|
| 100 |
|
| 101 |
+
video_path = "turbo_output.mp4"
|
| 102 |
export_to_video(output, video_path, fps=8)
|
| 103 |
|
| 104 |
log_messages += "✅ FERTIG!"
|
| 105 |
return video_path, log_messages
|
| 106 |
|
| 107 |
except Exception as e:
|
| 108 |
+
return None, log_messages + f"\n❌ Fehler: {e}"
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
| 110 |
with gr.Blocks() as demo:
|
| 111 |
+
gr.Markdown("# I2VGen-XL ⚡ TURBO (LCM)")
|
| 112 |
+
gr.Markdown("Mit LCM LoRA: Nur 6 Steps nötig! (Hoffen wir, dass der RAM reicht)")
|
| 113 |
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column():
|
| 116 |
img = gr.Image(type="pil", label="Bild")
|
| 117 |
+
txt = gr.Textbox(label="Prompt", value="clouds moving, cinematic")
|
| 118 |
neg = gr.Textbox(value="distortion, blurry", label="Negative")
|
| 119 |
+
btn = gr.Button("Turbo Start (6 Steps)")
|
|
|
|
| 120 |
|
| 121 |
with gr.Row():
|
| 122 |
vid = gr.Video(label="Video")
|
| 123 |
+
logs = gr.Textbox(label="Status", lines=8)
|
| 124 |
|
| 125 |
+
btn.click(generate_video, [img, txt, neg], [vid, logs])
|
| 126 |
|
| 127 |
demo.launch()
|