LucanDerLurch commited on
Commit
f82f9b6
·
verified ·
1 Parent(s): 7b4e367

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -31
app.py CHANGED
@@ -1,11 +1,13 @@
1
  import gradio as gr
2
  import torch
3
- from diffusers import I2VGenXLPipeline
4
  from diffusers.utils import export_to_video
5
  import gc
6
  import traceback
7
 
8
  MODEL_ID = "ali-vilab/i2vgen-xl"
 
 
9
  pipe = None
10
 
11
  def load_model_safely():
@@ -13,27 +15,39 @@ def load_model_safely():
13
  if pipe is not None:
14
  return pipe, "Modell bereits geladen."
15
 
16
- log = "Starte Lade-Prozess...\n"
17
 
18
  try:
19
- # Wir laden fp16 Varianten, nutzen sie aber als float32
20
  pipe = I2VGenXLPipeline.from_pretrained(
21
  MODEL_ID,
22
  torch_dtype=torch.float32,
23
  variant="fp16"
24
  )
25
 
26
- # JETZT WIRD ES SPANNEND: Klappt das Offloading mit den neuen Requirements?
 
27
  try:
28
- pipe.enable_model_cpu_offload()
29
- log += "✅ SUCCESS: Model CPU Offloading ist AKTIV!\n"
 
 
 
 
 
30
  except Exception as e:
31
- log += f"⚠️ Offloading gescheitert: {e}\n"
 
 
 
 
 
 
32
  try:
33
  pipe.enable_sequential_cpu_offload()
34
- log += "✅ SUCCESS: Sequential Offloading ist AKTIV!\n"
35
  except:
36
- log += "❌ KRITISCH: Kein Offloading. 448px wird wahrscheinlich abstürzen.\n"
37
 
38
  pipe.enable_vae_slicing()
39
  pipe.enable_vae_tiling()
@@ -43,14 +57,13 @@ def load_model_safely():
43
  except Exception as e:
44
  return None, f"Absturz beim Laden: {e}"
45
 
46
- def generate_video(image_in, prompt, negative_prompt, steps):
47
  global pipe
48
  log_messages = ""
49
 
50
  if image_in is None:
51
  return None, "Kein Bild!"
52
 
53
- # Modell laden
54
  if pipe is None:
55
  model, msg = load_model_safely()
56
  log_messages += msg
@@ -62,14 +75,14 @@ def generate_video(image_in, prompt, negative_prompt, steps):
62
  gc.collect()
63
 
64
  try:
65
- # WIR ERZWINGEN EINE FUNKTIONIERENDE AUFLÖSUNG
66
- # Unter 448 sieht das Bild kaputt aus (wie in deinem Screenshot).
67
- target_size = 448
 
68
 
69
- log_messages += f"Skaliere auf {target_size}x{target_size} (Minimum für Qualität)...\n"
70
- image_in = image_in.resize((target_size, target_size))
71
 
72
- log_messages += f"Starte Generierung ({steps} Steps)... Bitte Geduld.\n"
73
 
74
  generator = torch.manual_seed(42)
75
 
@@ -79,41 +92,36 @@ def generate_video(image_in, prompt, negative_prompt, steps):
79
  negative_prompt=negative_prompt,
80
  num_frames=16,
81
  num_inference_steps=steps,
82
- guidance_scale=9.0,
83
  height=target_size,
84
  width=target_size,
85
  generator=generator
86
  ).frames[0]
87
 
88
- video_path = "final.mp4"
89
  export_to_video(output, video_path, fps=8)
90
 
91
  log_messages += "✅ FERTIG!"
92
  return video_path, log_messages
93
 
94
  except Exception as e:
95
- err = str(e)
96
- if "Out of memory" in err or "Killed" in err:
97
- return None, log_messages + "\n❌ RAM VOLL. Das 16GB Limit verhindert diese Auflösung."
98
- return None, log_messages + f"\n❌ Fehler: {err}"
99
 
100
- # Interface
101
  with gr.Blocks() as demo:
102
- gr.Markdown("# I2VGen-XL (448px Fix)")
103
- gr.Markdown("Wir versuchen 448x448 Pixel. Wenn das wegen RAM abstürzt, ist dieses Modell unmöglich auf Free Tier.")
104
 
105
  with gr.Row():
106
  with gr.Column():
107
  img = gr.Image(type="pil", label="Bild")
108
- txt = gr.Textbox(label="Prompt", value="girl jumping")
109
  neg = gr.Textbox(value="distortion, blurry", label="Negative")
110
- steps = gr.Slider(4, 25, value=10, step=1, label="Steps")
111
- btn = gr.Button("Starten")
112
 
113
  with gr.Row():
114
  vid = gr.Video(label="Video")
115
- logs = gr.Textbox(label="Log", lines=8)
116
 
117
- btn.click(generate_video, [img, txt, neg, steps], [vid, logs])
118
 
119
  demo.launch()
 
1
  import gradio as gr
2
  import torch
3
+ from diffusers import I2VGenXLPipeline, LCMScheduler
4
  from diffusers.utils import export_to_video
5
  import gc
6
  import traceback
7
 
8
  MODEL_ID = "ali-vilab/i2vgen-xl"
9
+ LORA_ID = "latent-consistency/lcm-lora-sdxl" # Die Turbo-Impfung
10
+
11
  pipe = None
12
 
13
  def load_model_safely():
 
15
  if pipe is not None:
16
  return pipe, "Modell bereits geladen."
17
 
18
+ log = "Lade Modell...\n"
19
 
20
  try:
21
+ # 1. Basis Modell laden
22
  pipe = I2VGenXLPipeline.from_pretrained(
23
  MODEL_ID,
24
  torch_dtype=torch.float32,
25
  variant="fp16"
26
  )
27
 
28
+ # 2. TURBO (LCM) LADEN
29
+ log += "💉 Injiziere LCM Turbo LoRA...\n"
30
  try:
31
+ # Wir laden den Adapter. Das braucht etwas RAM!
32
+ pipe.load_lora_weights(LORA_ID, adapter_name="lcm")
33
+ pipe.fuse_lora() # Verschmilzt LoRA mit Modell für Speed
34
+
35
+ # WICHTIG: Scheduler auf LCM ändern
36
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
37
+ log += "✅ Turbo aktiviert (LCM Scheduler & LoRA geladen).\n"
38
  except Exception as e:
39
+ log += f"⚠️ Turbo fehlgeschlagen (RAM voll?): {e}\nWir machen langsam weiter.\n"
40
+
41
+ # 3. Speicher Optimierung
42
+ try:
43
+ pipe.enable_model_cpu_offload()
44
+ log += "✅ Model Offloading aktiv.\n"
45
+ except:
46
  try:
47
  pipe.enable_sequential_cpu_offload()
48
+ log += "✅ Sequential Offloading aktiv.\n"
49
  except:
50
+ log += "❌ RAM WARNUNG: Kein Offloading möglich.\n"
51
 
52
  pipe.enable_vae_slicing()
53
  pipe.enable_vae_tiling()
 
57
  except Exception as e:
58
  return None, f"Absturz beim Laden: {e}"
59
 
60
+ def generate_video(image_in, prompt, negative_prompt):
61
  global pipe
62
  log_messages = ""
63
 
64
  if image_in is None:
65
  return None, "Kein Bild!"
66
 
 
67
  if pipe is None:
68
  model, msg = load_model_safely()
69
  log_messages += msg
 
75
  gc.collect()
76
 
77
  try:
78
+ # TURBO SETUP:
79
+ target_size = 448 # Wir hoffen, dass 448 mit LoRA noch passt
80
+ steps = 6 # LCM braucht nur 4-8 Steps!
81
+ guidance = 1.5 # LCM braucht niedrigen Guidance Scale (1.0 - 2.0)
82
 
83
+ log_messages += f"Generiere Turbo-Video (Nur {steps} Steps!)...\n"
 
84
 
85
+ image_in = image_in.resize((target_size, target_size))
86
 
87
  generator = torch.manual_seed(42)
88
 
 
92
  negative_prompt=negative_prompt,
93
  num_frames=16,
94
  num_inference_steps=steps,
95
+ guidance_scale=guidance,
96
  height=target_size,
97
  width=target_size,
98
  generator=generator
99
  ).frames[0]
100
 
101
+ video_path = "turbo_output.mp4"
102
  export_to_video(output, video_path, fps=8)
103
 
104
  log_messages += "✅ FERTIG!"
105
  return video_path, log_messages
106
 
107
  except Exception as e:
108
+ return None, log_messages + f"\n❌ Fehler: {e}"
 
 
 
109
 
 
110
  with gr.Blocks() as demo:
111
+ gr.Markdown("# I2VGen-XL ⚡ TURBO (LCM)")
112
+ gr.Markdown("Mit LCM LoRA: Nur 6 Steps nötig! (Hoffen wir, dass der RAM reicht)")
113
 
114
  with gr.Row():
115
  with gr.Column():
116
  img = gr.Image(type="pil", label="Bild")
117
+ txt = gr.Textbox(label="Prompt", value="clouds moving, cinematic")
118
  neg = gr.Textbox(value="distortion, blurry", label="Negative")
119
+ btn = gr.Button("Turbo Start (6 Steps)")
 
120
 
121
  with gr.Row():
122
  vid = gr.Video(label="Video")
123
+ logs = gr.Textbox(label="Status", lines=8)
124
 
125
+ btn.click(generate_video, [img, txt, neg], [vid, logs])
126
 
127
  demo.launch()