Spaces:
Runtime error
Runtime error
| import logging | |
| import os.path | |
| import pickle | |
| from pathlib import Path | |
| from typing import Tuple, Union | |
| import numpy as np | |
| from cttpunctuator.src.utils.OrtInferSession import ONNXRuntimeError, OrtInferSession | |
| from cttpunctuator.src.utils.text_post_process import ( | |
| TokenIDConverter, | |
| code_mix_split_words, | |
| split_to_mini_sentence, | |
| ) | |
| class CT_Transformer: | |
| """ | |
| Author: Speech Lab, Alibaba Group, China | |
| CT-Transformer: Controllable time-delay transformer | |
| for real-time punctuation prediction and disfluency detection | |
| https://arxiv.org/pdf/2003.01309.pdf | |
| """ | |
| def __init__( | |
| self, | |
| model_dir: Union[str, Path] = None, | |
| batch_size: int = 1, | |
| device_id: Union[str, int] = "-1", | |
| quantize: bool = False, | |
| intra_op_num_threads: int = 4, | |
| ): | |
| model_dir = model_dir or os.path.join(os.path.dirname(__file__), "onnx") | |
| if model_dir is None or not Path(model_dir).exists(): | |
| raise FileNotFoundError(f"{model_dir} does not exist.") | |
| model_file = os.path.join(model_dir, "punc.onnx") | |
| if quantize: | |
| model_file = os.path.join(model_dir, "model_quant.onnx") | |
| config_file = os.path.join(model_dir, "punc.bin") | |
| with open(config_file, "rb") as file: | |
| config = pickle.load(file) | |
| self.converter = TokenIDConverter(config["token_list"]) | |
| self.ort_infer = OrtInferSession( | |
| model_file, device_id, intra_op_num_threads=intra_op_num_threads | |
| ) | |
| self.batch_size = 1 | |
| self.punc_list = config["punc_list"] | |
| self.period = 0 | |
| for i in range(len(self.punc_list)): | |
| if self.punc_list[i] == ",": | |
| self.punc_list[i] = "," | |
| elif self.punc_list[i] == "?": | |
| self.punc_list[i] = "?" | |
| elif self.punc_list[i] == "。": | |
| self.period = i | |
| def __call__(self, text: Union[list, str], split_size=20): | |
| split_text = code_mix_split_words(text) | |
| split_text_id = self.converter.tokens2ids(split_text) | |
| mini_sentences = split_to_mini_sentence(split_text, split_size) | |
| mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) | |
| assert len(mini_sentences) == len(mini_sentences_id) | |
| cache_sent = [] | |
| cache_sent_id = [] | |
| new_mini_sentence = "" | |
| new_mini_sentence_punc = [] | |
| cache_pop_trigger_limit = 200 | |
| for mini_sentence_i in range(len(mini_sentences)): | |
| mini_sentence = mini_sentences[mini_sentence_i] | |
| mini_sentence_id = mini_sentences_id[mini_sentence_i] | |
| mini_sentence = cache_sent + mini_sentence | |
| mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype="int64") | |
| text_lengths = np.array([len(mini_sentence)], dtype="int32") | |
| data = { | |
| "text": mini_sentence_id[None, :], | |
| "text_lengths": text_lengths, | |
| } | |
| try: | |
| outputs = self.infer(data["text"], data["text_lengths"]) | |
| y = outputs[0] | |
| punctuations = np.argmax(y, axis=-1)[0] | |
| assert punctuations.size == len(mini_sentence) | |
| except ONNXRuntimeError as e: | |
| logging.exception(e) | |
| # Search for the last Period/QuestionMark as cache | |
| if mini_sentence_i < len(mini_sentences) - 1: | |
| sentenceEnd = -1 | |
| last_comma_index = -1 | |
| for i in range(len(punctuations) - 2, 1, -1): | |
| if ( | |
| self.punc_list[punctuations[i]] == "。" | |
| or self.punc_list[punctuations[i]] == "?" | |
| ): | |
| sentenceEnd = i | |
| break | |
| if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": | |
| last_comma_index = i | |
| if ( | |
| sentenceEnd < 0 | |
| and len(mini_sentence) > cache_pop_trigger_limit | |
| and last_comma_index >= 0 | |
| ): | |
| # The sentence it too long, cut off at a comma. | |
| sentenceEnd = last_comma_index | |
| punctuations[sentenceEnd] = self.period | |
| cache_sent = mini_sentence[sentenceEnd + 1 :] | |
| cache_sent_id = mini_sentence_id[sentenceEnd + 1 :].tolist() | |
| mini_sentence = mini_sentence[0 : sentenceEnd + 1] | |
| punctuations = punctuations[0 : sentenceEnd + 1] | |
| new_mini_sentence_punc += [int(x) for x in punctuations] | |
| words_with_punc = [] | |
| for i in range(len(mini_sentence)): | |
| if i > 0: | |
| if ( | |
| len(mini_sentence[i][0].encode()) == 1 | |
| and len(mini_sentence[i - 1][0].encode()) == 1 | |
| ): | |
| mini_sentence[i] = " " + mini_sentence[i] | |
| words_with_punc.append(mini_sentence[i]) | |
| if self.punc_list[punctuations[i]] != "_": | |
| words_with_punc.append(self.punc_list[punctuations[i]]) | |
| new_mini_sentence += "".join(words_with_punc) | |
| # Add Period for the end of the sentence | |
| new_mini_sentence_out = new_mini_sentence | |
| new_mini_sentence_punc_out = new_mini_sentence_punc | |
| if mini_sentence_i == len(mini_sentences) - 1: | |
| if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、": | |
| new_mini_sentence_out = new_mini_sentence[:-1] + "。" | |
| new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
| self.period | |
| ] | |
| elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?": | |
| new_mini_sentence_out = new_mini_sentence + "。" | |
| new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
| self.period | |
| ] | |
| return new_mini_sentence_out, new_mini_sentence_punc_out | |
| def infer( | |
| self, feats: np.ndarray, feats_len: np.ndarray | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| outputs = self.ort_infer([feats, feats_len]) | |
| return outputs | |
| class CT_Transformer_VadRealtime(CT_Transformer): | |
| """ | |
| Author: Speech Lab, Alibaba Group, China | |
| CT-Transformer: Controllable time-delay transformer for | |
| real-time punctuation prediction and disfluency detection | |
| https://arxiv.org/pdf/2003.01309.pdf | |
| """ | |
| def __init__( | |
| self, | |
| model_dir: Union[str, Path] = None, | |
| batch_size: int = 1, | |
| device_id: Union[str, int] = "-1", | |
| quantize: bool = False, | |
| intra_op_num_threads: int = 4, | |
| ): | |
| super(CT_Transformer_VadRealtime, self).__init__( | |
| model_dir, batch_size, device_id, quantize, intra_op_num_threads | |
| ) | |
| def __call__(self, text: str, param_dict: map, split_size=20): | |
| cache_key = "cache" | |
| assert cache_key in param_dict | |
| cache = param_dict[cache_key] | |
| if cache is not None and len(cache) > 0: | |
| precache = "".join(cache) | |
| else: | |
| precache = "" | |
| cache = [] | |
| full_text = precache + text | |
| split_text = code_mix_split_words(full_text) | |
| split_text_id = self.converter.tokens2ids(split_text) | |
| mini_sentences = split_to_mini_sentence(split_text, split_size) | |
| mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) | |
| new_mini_sentence_punc = [] | |
| assert len(mini_sentences) == len(mini_sentences_id) | |
| cache_sent = [] | |
| cache_sent_id = np.array([], dtype="int32") | |
| sentence_punc_list = [] | |
| sentence_words_list = [] | |
| cache_pop_trigger_limit = 200 | |
| skip_num = 0 | |
| for mini_sentence_i in range(len(mini_sentences)): | |
| mini_sentence = mini_sentences[mini_sentence_i] | |
| mini_sentence_id = mini_sentences_id[mini_sentence_i] | |
| mini_sentence = cache_sent + mini_sentence | |
| mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0) | |
| text_length = len(mini_sentence_id) | |
| data = { | |
| "input": np.array(mini_sentence_id[None, :], dtype="int64"), | |
| "text_lengths": np.array([text_length], dtype="int32"), | |
| "vad_mask": self.vad_mask(text_length, len(cache))[ | |
| None, None, :, : | |
| ].astype(np.float32), | |
| "sub_masks": np.tril( | |
| np.ones((text_length, text_length), dtype=np.float32) | |
| )[None, None, :, :].astype(np.float32), | |
| } | |
| try: | |
| outputs = self.infer( | |
| data["input"], | |
| data["text_lengths"], | |
| data["vad_mask"], | |
| data["sub_masks"], | |
| ) | |
| y = outputs[0] | |
| punctuations = np.argmax(y, axis=-1)[0] | |
| assert punctuations.size == len(mini_sentence) | |
| except ONNXRuntimeError as e: | |
| logging.exception(e) | |
| # Search for the last Period/QuestionMark as cache | |
| if mini_sentence_i < len(mini_sentences) - 1: | |
| sentenceEnd = -1 | |
| last_comma_index = -1 | |
| for i in range(len(punctuations) - 2, 1, -1): | |
| if ( | |
| self.punc_list[punctuations[i]] == "。" | |
| or self.punc_list[punctuations[i]] == "?" | |
| ): | |
| sentenceEnd = i | |
| break | |
| if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": | |
| last_comma_index = i | |
| if ( | |
| sentenceEnd < 0 | |
| and len(mini_sentence) > cache_pop_trigger_limit | |
| and last_comma_index >= 0 | |
| ): | |
| # The sentence it too long, cut off at a comma. | |
| sentenceEnd = last_comma_index | |
| punctuations[sentenceEnd] = self.period | |
| cache_sent = mini_sentence[sentenceEnd + 1 :] | |
| cache_sent_id = mini_sentence_id[sentenceEnd + 1 :] | |
| mini_sentence = mini_sentence[0 : sentenceEnd + 1] | |
| punctuations = punctuations[0 : sentenceEnd + 1] | |
| punctuations_np = [int(x) for x in punctuations] | |
| new_mini_sentence_punc += punctuations_np | |
| sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np] | |
| sentence_words_list += mini_sentence | |
| assert len(sentence_punc_list) == len(sentence_words_list) | |
| words_with_punc = [] | |
| sentence_punc_list_out = [] | |
| for i in range(0, len(sentence_words_list)): | |
| if i > 0: | |
| if ( | |
| len(sentence_words_list[i][0].encode()) == 1 | |
| and len(sentence_words_list[i - 1][-1].encode()) == 1 | |
| ): | |
| sentence_words_list[i] = " " + sentence_words_list[i] | |
| if skip_num < len(cache): | |
| skip_num += 1 | |
| else: | |
| words_with_punc.append(sentence_words_list[i]) | |
| if skip_num >= len(cache): | |
| sentence_punc_list_out.append(sentence_punc_list[i]) | |
| if sentence_punc_list[i] != "_": | |
| words_with_punc.append(sentence_punc_list[i]) | |
| sentence_out = "".join(words_with_punc) | |
| sentenceEnd = -1 | |
| for i in range(len(sentence_punc_list) - 2, 1, -1): | |
| if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?": | |
| sentenceEnd = i | |
| break | |
| cache_out = sentence_words_list[sentenceEnd + 1 :] | |
| if sentence_out[-1] in self.punc_list: | |
| sentence_out = sentence_out[:-1] | |
| sentence_punc_list_out[-1] = "_" | |
| param_dict[cache_key] = cache_out | |
| return sentence_out, sentence_punc_list_out, cache_out | |
| def vad_mask(self, size, vad_pos, dtype=np.bool_): | |
| """Create mask for decoder self-attention. | |
| :param int size: size of mask | |
| :param int vad_pos: index of vad index | |
| :param torch.dtype dtype: result dtype | |
| :rtype: torch.Tensor (B, Lmax, Lmax) | |
| """ | |
| ret = np.ones((size, size), dtype=dtype) | |
| if vad_pos <= 0 or vad_pos >= size: | |
| return ret | |
| sub_corner = np.zeros((vad_pos - 1, size - vad_pos), dtype=dtype) | |
| ret[0 : vad_pos - 1, vad_pos:] = sub_corner | |
| return ret | |
| def infer( | |
| self, | |
| feats: np.ndarray, | |
| feats_len: np.ndarray, | |
| vad_mask: np.ndarray, | |
| sub_masks: np.ndarray, | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks]) | |
| return outputs | |