# The DETERMINATOR Examples **NO MOCKS. NO FAKE DATA. REAL SCIENCE.** These demos run the REAL deep research pipeline with actual API calls. --- ## Prerequisites You MUST have API keys configured: ```bash # Copy the example and add your keys cp .env.example .env # Required (pick one): OPENAI_API_KEY=sk-... ANTHROPIC_API_KEY=sk-ant-... # Optional (higher PubMed rate limits): NCBI_API_KEY=your-key ``` --- ## Examples ### 1. Search Demo (No LLM Required) Demonstrates REAL parallel search across PubMed, ClinicalTrials.gov, and Europe PMC. ```bash uv run python examples/search_demo/run_search.py "metformin cancer" ``` **What's REAL:** - Actual NCBI E-utilities API calls (PubMed) - Actual ClinicalTrials.gov API calls - Actual Europe PMC API calls (includes preprints) - Real papers, real trials, real preprints --- ### 2. Embeddings Demo (No LLM Required) Demonstrates REAL semantic search and deduplication. ```bash uv run python examples/embeddings_demo/run_embeddings.py ``` **What's REAL:** - Actual sentence-transformers model (all-MiniLM-L6-v2) - Actual ChromaDB vector storage - Real cosine similarity computations - Real semantic deduplication --- ### 3. Orchestrator Demo (LLM Required) Demonstrates the REAL search-judge-synthesize loop. ```bash uv run python examples/orchestrator_demo/run_agent.py "metformin cancer" uv run python examples/orchestrator_demo/run_agent.py "aspirin alzheimer" --iterations 5 ``` **What's REAL:** - Real PubMed + ClinicalTrials + Europe PMC searches - Real LLM judge evaluating evidence quality - Real iterative refinement based on LLM decisions - Real research synthesis --- ### 4. Magentic Demo (OpenAI Required) Demonstrates REAL multi-agent coordination using Microsoft Agent Framework. ```bash # Requires OPENAI_API_KEY specifically uv run python examples/orchestrator_demo/run_magentic.py "metformin cancer" ``` **What's REAL:** - Real MagenticBuilder orchestration - Real SearchAgent, JudgeAgent, HypothesisAgent, ReportAgent - Real manager-based coordination --- ### 5. Hypothesis Demo (LLM Required) Demonstrates REAL mechanistic hypothesis generation. ```bash uv run python examples/hypothesis_demo/run_hypothesis.py "metformin Alzheimer's" uv run python examples/hypothesis_demo/run_hypothesis.py "sildenafil heart failure" ``` **What's REAL:** - Real PubMed + Web search first - Real embedding-based deduplication - Real LLM generating Drug -> Target -> Pathway -> Effect chains - Real knowledge gap identification --- ### 6. Full-Stack Demo (LLM Required) **THE COMPLETE PIPELINE** - All phases working together. ```bash uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's" uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3 ``` **What's REAL:** 1. Real PubMed + ClinicalTrials + Europe PMC evidence collection 2. Real embedding-based semantic deduplication 3. Real LLM mechanistic hypothesis generation 4. Real LLM evidence quality assessment 5. Real LLM structured scientific report generation Output: Publication-quality research report with validated citations. --- ## API Key Requirements | Example | LLM Required | Keys | |---------|--------------|------| | search_demo | No | Optional: `NCBI_API_KEY` | | embeddings_demo | No | None | | orchestrator_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` | | run_magentic | Yes | `OPENAI_API_KEY` (Magentic requires OpenAI) | | hypothesis_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` | | full_stack_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` | --- ## Architecture ```text User Query | v [REAL Search] --> PubMed + ClinicalTrials + Europe PMC APIs | v [REAL Embeddings] --> Actual sentence-transformers | v [REAL Hypothesis] --> Actual LLM reasoning | v [REAL Judge] --> Actual LLM assessment | +---> Need more? --> Loop back to Search | +---> Sufficient --> Continue | v [REAL Report] --> Actual LLM synthesis | v Publication-Quality Research Report ``` --- ## Why No Mocks? > "Authenticity is the feature." Mocks belong in `tests/unit/`, not in demos. When you run these examples, you see: - Real papers from real databases - Real AI reasoning about real evidence - Real scientific hypotheses - Real research reports This is what The DETERMINATOR actually does. No fake data. No canned responses.