Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,096 Bytes
52b4ed7 af9efda 52b4ed7 03d8100 52b4ed7 daa4c4c 52b4ed7 d0e54ed 52b4ed7 af9efda 03d8100 63e92ef 03d8100 63e92ef 03d8100 f7415cc 52b4ed7 03d8100 f7415cc 03d8100 f7415cc c11b620 03d8100 c11b620 03d8100 a5fe328 c11b620 03d8100 a5fe328 03d8100 c11b620 03d8100 52b4ed7 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc e06fdc8 f7415cc 52b4ed7 d0e54ed 52b4ed7 d0e54ed 52b4ed7 a5fe328 d0e54ed a5fe328 52b4ed7 d0e54ed 52b4ed7 a5fe328 52b4ed7 af9efda a5fe328 af9efda a5fe328 af9efda a5fe328 af9efda 52b4ed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
"""Model initialization and management"""
import os
import torch
import threading
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from logger import logger
import config
import spaces
try:
from snac import SNAC
SNAC_AVAILABLE = True
except ImportError:
SNAC_AVAILABLE = False
SNAC = None
# For backward compatibility, check TTS library too (but we use Maya1 directly)
try:
from TTS.api import TTS
TTS_AVAILABLE = True
except ImportError:
TTS_AVAILABLE = False
TTS = None
try:
from transformers import WhisperProcessor, WhisperForConditionalGeneration
try:
import torchaudio
except ImportError:
torchaudio = None
WHISPER_AVAILABLE = True
except ImportError:
WHISPER_AVAILABLE = False
WhisperProcessor = None
WhisperForConditionalGeneration = None
torchaudio = None
# Model loading state tracking
_model_loading_states = {}
_model_loading_lock = threading.Lock()
def set_model_loading_state(model_name: str, state: str):
"""
Set model loading state: 'loading', 'loaded', 'error'
Note: No GPU decorator needed - this just sets a dictionary value, no GPU access required.
"""
with _model_loading_lock:
_model_loading_states[model_name] = state
logger.debug(f"Model {model_name} state set to: {state}")
def get_model_loading_state(model_name: str) -> str:
"""
Get model loading state: 'loading', 'loaded', 'error', or 'unknown'
Note: No GPU decorator needed - this just reads a dictionary value, no GPU access required.
"""
with _model_loading_lock:
return _model_loading_states.get(model_name, "unknown")
def is_model_loaded(model_name: str) -> bool:
"""Check if model is loaded and ready"""
with _model_loading_lock:
return (model_name in config.global_medical_models and
config.global_medical_models[model_name] is not None and
_model_loading_states.get(model_name) == "loaded")
def initialize_medical_model(model_name: str, load_to_gpu: bool = True):
"""
Initialize medical model (MedSwin) - download on demand
According to ZeroGPU best practices:
- If load_to_gpu=True: Load directly to GPU using device_map="auto" (must be called within @spaces.GPU decorated function)
- If load_to_gpu=False: Load to CPU first, then move to GPU in inference function
Args:
model_name: Name of the model to load
load_to_gpu: If True, load directly to GPU. If False, load to CPU (for ZeroGPU best practices)
"""
if model_name not in config.global_medical_models or config.global_medical_models[model_name] is None:
set_model_loading_state(model_name, "loading")
logger.info(f"Initializing medical model: {model_name}... (load_to_gpu={load_to_gpu})")
try:
model_path = config.MEDSWIN_MODELS[model_name]
tokenizer = AutoTokenizer.from_pretrained(model_path, token=config.HF_TOKEN)
if load_to_gpu:
# Load directly to GPU (must be within @spaces.GPU decorated function)
# Clear GPU cache before loading to prevent memory issues
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cleared GPU cache before model loading")
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto", # Automatically places model on GPU
trust_remote_code=True,
token=config.HF_TOKEN,
torch_dtype=torch.float16
)
# Clear cache after loading
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cleared GPU cache after model loading")
else:
# Load to CPU first (ZeroGPU best practice - no GPU decorator needed)
logger.info(f"Loading {model_name} to CPU (will move to GPU during inference)...")
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="cpu", # Load to CPU
trust_remote_code=True,
token=config.HF_TOKEN,
torch_dtype=torch.float16
)
logger.info(f"Model {model_name} loaded to CPU successfully")
# Set models in config BEFORE setting state to "loaded"
config.global_medical_models[model_name] = model
config.global_medical_tokenizers[model_name] = tokenizer
# Set state to "loaded" AFTER models are stored
set_model_loading_state(model_name, "loaded")
logger.info(f"Medical model {model_name} initialized successfully")
# Verify the state was set correctly
if not is_model_loaded(model_name):
logger.warning(f"Model {model_name} initialized but is_model_loaded() returns False. State: {get_model_loading_state(model_name)}, in dict: {model_name in config.global_medical_models}")
except Exception as e:
set_model_loading_state(model_name, "error")
logger.error(f"Failed to initialize medical model {model_name}: {e}")
# Clear cache on error
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise
else:
# Model already loaded, ensure state is set
if get_model_loading_state(model_name) != "loaded":
logger.info(f"Model {model_name} exists in config but state not set to 'loaded'. Setting state now.")
set_model_loading_state(model_name, "loaded")
return config.global_medical_models[model_name], config.global_medical_tokenizers[model_name]
def move_model_to_gpu(model_name: str):
"""
Move a model from CPU to GPU (for ZeroGPU best practices)
Must be called within a @spaces.GPU decorated function
According to ZeroGPU best practices:
- Models should be loaded to CPU first (no GPU quota used)
- Models are moved to GPU only during inference (within @spaces.GPU decorated function)
For models loaded with device_map="cpu", we reload with device_map="auto" to avoid
meta tensor issues when moving to GPU.
"""
if model_name not in config.global_medical_models:
raise ValueError(f"Model {model_name} not found in config")
model = config.global_medical_models[model_name]
if model is None:
raise ValueError(f"Model {model_name} is None")
# Check if model is already on GPU
try:
# For models with device_map, check the actual device
if hasattr(model, 'device'):
device_str = str(model.device)
if 'cuda' in device_str.lower():
logger.debug(f"Model {model_name} is already on GPU ({device_str})")
return model
# Check device_map if available
if hasattr(model, 'hf_device_map'):
device_map = model.hf_device_map
if isinstance(device_map, dict):
# Check if any device is GPU
if any('cuda' in str(dev).lower() for dev in device_map.values()):
logger.debug(f"Model {model_name} is already on GPU (device_map)")
return model
except Exception as e:
logger.debug(f"Could not check model device: {e}")
# For models loaded with device_map="cpu", we need to reload with device_map="auto"
# because models with meta tensors cannot be moved with .to()
logger.info(f"Moving model {model_name} from CPU to GPU...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Get model path for reloading
if model_name not in config.MEDSWIN_MODELS:
raise ValueError(f"Model path for {model_name} not found in config.MEDSWIN_MODELS")
model_path = config.MEDSWIN_MODELS[model_name]
try:
# Reload model with device_map="auto" to place it on GPU
# This avoids meta tensor issues when moving from CPU to GPU
logger.info(f"Reloading model {model_name} with device_map='auto' for GPU placement...")
# Delete the old model to free memory
del model
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Reload with GPU device_map
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto", # Automatically places model on GPU
trust_remote_code=True,
token=config.HF_TOKEN,
torch_dtype=torch.float16
)
config.global_medical_models[model_name] = model
logger.info(f"Model {model_name} reloaded to GPU successfully")
except Exception as e:
logger.error(f"Failed to reload model {model_name} to GPU: {e}")
# Try fallback with accelerate dispatch if reload fails
try:
logger.info(f"Trying accelerate dispatch as fallback...")
from accelerate import dispatch_model
from accelerate.utils import get_balanced_memory, infer_auto_device_map
# Reload model first (in case deletion happened)
if model_name not in config.global_medical_models or config.global_medical_models[model_name] is None:
logger.info(f"Reloading model {model_name} to CPU for accelerate dispatch...")
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="cpu",
trust_remote_code=True,
token=config.HF_TOKEN,
torch_dtype=torch.float16
)
config.global_medical_models[model_name] = model
else:
model = config.global_medical_models[model_name]
# Get device map for GPU
max_memory = get_balanced_memory(model, max_memory={0: "20GiB"})
device_map = infer_auto_device_map(model, max_memory=max_memory)
model = dispatch_model(model, device_map=device_map)
config.global_medical_models[model_name] = model
logger.info(f"Model {model_name} moved to GPU successfully using accelerate dispatch")
except Exception as e2:
logger.error(f"Failed to move model {model_name} to GPU with all methods: {e2}")
raise
if torch.cuda.is_available():
torch.cuda.empty_cache()
return model
def initialize_tts_model():
"""Initialize Maya1 TTS model for text-to-speech using transformers and SNAC"""
if not SNAC_AVAILABLE:
logger.warning("SNAC library not installed. Maya1 TTS features will be disabled.")
logger.warning("Install with: pip install snac")
return None
if config.global_tts_model is None:
try:
# Clear GPU cache before loading
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cleared GPU cache before TTS model loading")
logger.info("Initializing Maya1 TTS model with Transformers...")
# Load Maya1 model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
config.TTS_MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
token=config.HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(
config.TTS_MODEL,
trust_remote_code=True,
token=config.HF_TOKEN
)
logger.info("Loading SNAC decoder...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
if torch.cuda.is_available():
snac_model = snac_model.to("cuda")
# Store as a dictionary with model, tokenizer, and snac_model
config.global_tts_model = {
"model": model,
"tokenizer": tokenizer,
"snac_model": snac_model
}
logger.info("Maya1 TTS model initialized successfully")
# Clear cache after loading
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cleared GPU cache after TTS model loading")
except Exception as e:
logger.warning(f"Maya1 TTS model initialization failed: {e}")
import traceback
logger.warning(f"TTS initialization traceback: {traceback.format_exc()}")
logger.warning("TTS features will be disabled. Install dependencies: pip install snac transformers")
config.global_tts_model = None
# Clear cache on error
if torch.cuda.is_available():
torch.cuda.empty_cache()
return config.global_tts_model
def initialize_whisper_model():
"""Initialize Whisper model for speech-to-text (ASR) from Hugging Face"""
if not WHISPER_AVAILABLE:
logger.warning("Whisper transformers not installed. ASR features will be disabled.")
return None
if config.global_whisper_model is None:
try:
# Clear GPU cache before loading
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cleared GPU cache before Whisper model loading")
logger.info("Initializing Whisper model (openai/whisper-large-v3-turbo) from Hugging Face...")
model_id = "openai/whisper-large-v3-turbo"
processor = WhisperProcessor.from_pretrained(model_id, token=config.HF_TOKEN)
model = WhisperForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16,
token=config.HF_TOKEN
)
# Store both processor and model
config.global_whisper_model = {"processor": processor, "model": model}
logger.info(f"Whisper model ({model_id}) initialized successfully")
# Clear cache after loading
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cleared GPU cache after Whisper model loading")
except Exception as e:
logger.warning(f"Whisper model initialization failed: {e}")
logger.warning("ASR features will be disabled. Install with: pip install transformers torchaudio")
config.global_whisper_model = None
# Clear cache on error
if torch.cuda.is_available():
torch.cuda.empty_cache()
return config.global_whisper_model
def get_or_create_embed_model():
"""Reuse embedding model to avoid reloading weights each request"""
if config.global_embed_model is None:
logger.info("Initializing shared embedding model for RAG retrieval...")
config.global_embed_model = HuggingFaceEmbedding(model_name=config.EMBEDDING_MODEL, token=config.HF_TOKEN)
return config.global_embed_model
def get_llm_for_rag(temperature=0.7, max_new_tokens=256, top_p=0.95, top_k=50):
"""Get LLM for RAG indexing (uses medical model)"""
medical_model_obj, medical_tokenizer = initialize_medical_model(config.DEFAULT_MEDICAL_MODEL)
return HuggingFaceLLM(
context_window=4096,
max_new_tokens=max_new_tokens,
tokenizer=medical_tokenizer,
model=medical_model_obj,
generate_kwargs={
"do_sample": True,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p
}
)
|