Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,785 Bytes
52b4ed7 ffcfd50 52b4ed7 0cd2df1 4f59c32 0cd2df1 2fffb9d 0cd2df1 52b4ed7 590a3e5 2fffb9d 590a3e5 52b4ed7 0cd2df1 52b4ed7 590a3e5 52b4ed7 590a3e5 52b4ed7 4a43fcc 52b4ed7 4a43fcc 52b4ed7 4a43fcc 52b4ed7 0cd2df1 52b4ed7 0cd2df1 52b4ed7 0cd2df1 52b4ed7 47e5fb1 c8562d7 47e5fb1 c8562d7 47e5fb1 52b4ed7 83a4de1 47e5fb1 83a4de1 590a3e5 6698c3b 590a3e5 52b4ed7 ffcfd50 52b4ed7 ffcfd50 590a3e5 ffcfd50 52b4ed7 ffcfd50 52b4ed7 590a3e5 52b4ed7 ffcfd50 52b4ed7 03d8100 52b4ed7 03d8100 52b4ed7 4ea2fc7 03d8100 52b4ed7 b61cc05 52b4ed7 b61cc05 52b4ed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 |
"""Gemini Supervisor functions for MAC architecture"""
import json
import asyncio
import torch
import spaces
from logger import logger
from client import MCP_AVAILABLE, call_agent
from config import GEMINI_MODEL, GEMINI_MODEL_LITE
from utils import format_prompt_manually
# Maximum number of subtasks for query breakdown
MAX_SUBTASKS = 3
# Maximum number of search strategies
MAX_SEARCH_STRATEGIES = 3
# Maximum duration for GPU requests
MAX_DURATION = 120
try:
import nest_asyncio
except ImportError:
nest_asyncio = None
async def gemini_supervisor_breakdown_async(
query: str,
use_rag: bool,
use_web_search: bool,
time_elapsed: float,
max_duration: int = MAX_DURATION,
previous_answer: str | None = None,
) -> dict:
"""Gemini Supervisor: Break user query into sub-topics.
previous_answer (optional) is the last assistant answer from the model.
When present, Gemini can interpret follow-up queries like "clarify your answer"
in the context of that prior response.
"""
remaining_time = max(15, max_duration - time_elapsed)
mode_description = []
if use_rag:
mode_description.append("RAG mode enabled - will use retrieved documents")
if use_web_search:
mode_description.append("Web search mode enabled - will search online sources")
if not mode_description:
mode_description.append("Direct answer mode - no additional context")
estimated_time_per_task = 8
max_topics_by_time = max(2, int((remaining_time - 20) / estimated_time_per_task))
max_topics = min(max_topics_by_time, MAX_SUBTASKS)
base_prompt = f"""You are a supervisor agent coordinating with a MedSwin medical specialist model.
Break the following medical query into focused sub-topics that MedSwin can answer sequentially.
Explore different potential approaches to comprehensively address the topic.
Query: "{query}"
Mode: {', '.join(mode_description)}
Time Remaining: ~{remaining_time:.1f}s
Maximum Topics: {max_topics} (adjust based on complexity - use as many as needed for thorough coverage)
"""
previous_answer_block = ""
if previous_answer:
# Truncate to keep prompt bounded
trimmed_answer = previous_answer.strip()
if len(trimmed_answer) > 2000:
trimmed_answer = trimmed_answer[:2000] + "..."
previous_answer_block = f"""
Previous assistant answer (for context if this is a follow-up question):
\"\"\"{trimmed_answer}\"\"\"
If the new query is a follow-up such as "clarify your answer" or
"based on the treatment you suggested, what about X?", interpret it
relative to this previous assistant answer while creating sub-topics.
"""
prompt = f"""{base_prompt}{previous_answer_block}
Return ONLY valid JSON (no markdown, no tables, no explanations):
{{
"sub_topics": [
{{
"id": 1,
"topic": "concise topic name",
"instruction": "specific directive for MedSwin to answer this topic",
"expected_tokens": 200,
"priority": "high|medium|low",
"approach": "brief description of approach/angle for this topic"
}},
...
],
"strategy": "brief strategy description explaining the breakdown approach",
"exploration_note": "brief note on different approaches explored"
}}
Guidelines:
- Break down the query into as many subtasks as needed for comprehensive coverage
- Explore different angles/approaches (e.g., clinical, diagnostic, treatment, prevention, research perspectives)
- Each topic should be focused and answerable in ~200 tokens by MedSwin
- Prioritize topics by importance (high priority first)
- Don't limit yourself to 4 topics - use more if the query is complex or multi-faceted"""
system_prompt = "You are a medical query supervisor. Break queries into structured JSON sub-topics, exploring different approaches. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
if not response or not response.strip():
logger.warning("[GEMINI SUPERVISOR] Gemini MCP returned empty response for breakdown, using fallback")
breakdown = {
"sub_topics": [
{"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"},
{"id": 2, "topic": "Clinical Details", "instruction": "Provide key clinical insights", "expected_tokens": 200, "priority": "medium", "approach": "clinical perspective"},
],
"strategy": "Sequential answer with key points",
"exploration_note": "Fallback breakdown - basic coverage"
}
logger.warning(f"[GEMINI SUPERVISOR] Using fallback breakdown")
return breakdown
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
breakdown = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Query broken into {len(breakdown.get('sub_topics', []))} sub-topics")
return breakdown
else:
raise ValueError("Supervisor JSON not found in response")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Breakdown parsing failed: {exc}")
logger.debug(f"Response was: {response[:200]}...")
breakdown = {
"sub_topics": [
{"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"},
{"id": 2, "topic": "Clinical Details", "instruction": "Provide key clinical insights", "expected_tokens": 200, "priority": "medium", "approach": "clinical perspective"},
],
"strategy": "Sequential answer with key points",
"exploration_note": "Fallback breakdown - basic coverage"
}
logger.warning(f"[GEMINI SUPERVISOR] Using fallback breakdown")
return breakdown
async def gemini_supervisor_search_strategies_async(query: str, time_elapsed: float) -> dict:
"""Gemini Supervisor: In search mode, break query into searching strategies"""
prompt = f"""You are supervising web search for a medical query.
Break this query into 1-{MAX_SEARCH_STRATEGIES} focused search strategies (each targeting 1-2 sources).
Query: "{query}"
Return ONLY valid JSON:
{{
"search_strategies": [
{{
"id": 1,
"strategy": "search query string",
"target_sources": 1,
"focus": "what to search for"
}},
...
],
"max_strategies": {MAX_SEARCH_STRATEGIES}
}}
Keep strategies focused and avoid overlap."""
system_prompt = "You are a search strategy supervisor. Create focused search queries. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE,
temperature=0.2
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
strategies = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Created {len(strategies.get('search_strategies', []))} search strategies")
return strategies
else:
raise ValueError("Search strategies JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Search strategies parsing failed: {exc}")
return {
"search_strategies": [
{"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
def _prepare_clinical_question_plan(plan: dict, safe_rounds: int) -> dict:
"""Normalize Gemini question plan to 1-5 sequential prompts."""
if not isinstance(plan, dict):
return {"questions": []}
questions = plan.get("questions", [])
if not isinstance(questions, list):
questions = []
cleaned = []
seen = set()
for idx, raw in enumerate(questions):
if not isinstance(raw, dict):
continue
question_text = (raw.get("question") or "").strip()
if not question_text:
continue
normalized = question_text.lower()
if normalized in seen:
continue
seen.add(normalized)
entry = dict(raw)
entry["question"] = question_text
entry["order"] = entry.get("order") or raw.get("id") or (idx + 1)
cleaned.append(entry)
cleaned.sort(key=lambda item: item.get("order", 0))
cleaned = cleaned[:max(1, min(5, safe_rounds))]
for idx, item in enumerate(cleaned, 1):
item["order"] = idx
plan["questions"] = cleaned
if cleaned:
plan["max_rounds"] = min(len(cleaned), safe_rounds)
plan["needs_additional_info"] = bool(plan.get("needs_additional_info", True))
else:
plan["needs_additional_info"] = False
plan["max_rounds"] = 0
return plan
async def gemini_supervisor_rag_brainstorm_async(query: str, retrieved_docs: str, time_elapsed: float) -> dict:
"""Gemini Supervisor: In RAG mode, brainstorm retrieved documents into 1-4 short contexts"""
max_doc_length = 3000
if len(retrieved_docs) > max_doc_length:
retrieved_docs = retrieved_docs[:max_doc_length] + "..."
prompt = f"""You are supervising RAG context preparation for a medical query.
Brainstorm the retrieved documents into 1-4 concise, focused contexts that MedSwin can use.
Query: "{query}"
Retrieved Documents:
{retrieved_docs}
Return ONLY valid JSON:
{{
"contexts": [
{{
"id": 1,
"context": "concise summary of relevant information (keep under 500 chars)",
"focus": "what this context covers",
"relevance": "high|medium|low"
}},
...
],
"max_contexts": 4
}}
Keep contexts brief and factual. Avoid redundancy."""
system_prompt = "You are a RAG context supervisor. Summarize documents into concise contexts. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE,
temperature=0.2
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
contexts = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Brainstormed {len(contexts.get('contexts', []))} RAG contexts")
return contexts
else:
raise ValueError("RAG contexts JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] RAG brainstorming parsing failed: {exc}")
return {
"contexts": [
{"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
async def gemini_clinical_intake_triage_async(
query: str,
history_context: str,
max_rounds: int = 5
) -> dict:
"""Gemini Intake Agent: Decide if additional clinical intake is needed and plan questions"""
history_block = history_context if history_context else "No prior conversation."
safe_rounds = max(1, min(5, max_rounds))
prompt = f"""You are a clinical intake coordinator helping a medical AI system.
Your job is to review the patient's latest request and decide if more clinical details are required before analysis.
Patient query:
"{query}"
Recent conversation (if any):
{history_block}
Return ONLY valid JSON (no markdown):
{{
"needs_additional_info": true | false,
"decision_reason": "brief justification",
"max_rounds": {safe_rounds},
"questions": [
{{
"order": 1,
"question": "single follow-up question to ask the patient",
"clinical_focus": "what aspect it clarifies (e.g., onset, severity, meds)",
"why_it_matters": "concise clinical rationale",
"optional": false
}},
...
],
"initial_hypotheses": [
"optional bullet on potential etiologies or next steps"
]
}}
Guidelines:
- Ask at most {safe_rounds} questions. Use fewer if the query is already specific.
- Order questions to maximize clinical value.
- Only mark needs_additional_info true when the current data is insufficient for safe reasoning.
- Keep wording patient-friendly and concise."""
system_prompt = "You are a triage clinician. Decide if more intake questions are required and outline them as structured JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE,
temperature=0.15
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
plan = json.loads(response[json_start:json_end])
plan = _prepare_clinical_question_plan(plan, safe_rounds)
return plan
raise ValueError("Clinical intake JSON not found")
except Exception as exc:
logger.error(f"[GEMINI INTAKE] Triage parsing failed: {exc}")
return {
"needs_additional_info": False,
"decision_reason": "Fallback: proceeding without intake",
"max_rounds": safe_rounds,
"questions": [],
"initial_hypotheses": []
}
def gemini_clinical_intake_triage(
query: str,
history_context: str,
max_rounds: int = 5
) -> dict:
"""Wrapper for synchronous clinical intake triage"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI INTAKE] MCP unavailable, skipping clinical intake triage")
return {
"needs_additional_info": False,
"decision_reason": "MCP unavailable",
"max_rounds": max_rounds,
"questions": [],
"initial_hypotheses": []
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(
gemini_clinical_intake_triage_async(query, history_context, max_rounds)
)
raise RuntimeError("nest_asyncio not available")
return loop.run_until_complete(
gemini_clinical_intake_triage_async(query, history_context, max_rounds)
)
except Exception as exc:
logger.error(f"[GEMINI INTAKE] Triage request failed: {exc}")
return {
"needs_additional_info": False,
"decision_reason": "Triage agent error",
"max_rounds": max_rounds,
"questions": [],
"initial_hypotheses": []
}
async def gemini_summarize_clinical_insights_async(
query: str,
qa_pairs: list
) -> dict:
"""Gemini Intake Agent: Convert answered intake questions into key clinical insights"""
qa_json = json.dumps(qa_pairs[:8]) # guard against very long history
prompt = f"""You are a clinical documentation expert.
Summarize the following intake Q&A into key insights for a supervising medical agent.
Original patient query:
"{query}"
Collected intake Q&A (JSON):
{qa_json}
Return ONLY valid JSON:
{{
"patient_profile": "1-2 sentence overview combining key demographics/symptoms",
"refined_problem_statement": "what problem the supervisor should solve now",
"key_findings": [
{{
"title": "short label",
"detail": "what the patient reported",
"clinical_implication": "why it matters"
}}
],
"handoff_note": "action-oriented instruction for the supervisor (<=2 sentences)"
}}
Guidelines:
- Highlight red flags, chronic meds, relevant history, and symptom trajectory.
- Only include facts explicitly stated in the Q&A."""
system_prompt = "You transform clinical intake dialogs into structured insights for downstream medical reasoning."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE,
temperature=0.2
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
return json.loads(response[json_start:json_end])
raise ValueError("Clinical insight JSON not found")
except Exception as exc:
logger.error(f"[GEMINI INTAKE] Insight summarization failed: {exc}")
return {
"patient_profile": "",
"refined_problem_statement": query,
"key_findings": [
{"title": "Patient concern", "detail": query, "clinical_implication": "Requires standard evaluation"}
],
"handoff_note": "Proceed with regular workflow."
}
def gemini_summarize_clinical_insights(query: str, qa_pairs: list) -> dict:
"""Wrapper for synchronous clinical insight summarization"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI INTAKE] MCP unavailable, using fallback intake summary")
return {
"patient_profile": "",
"refined_problem_statement": query,
"key_findings": [
{"title": "Patient concern", "detail": query, "clinical_implication": "Requires standard evaluation"}
],
"handoff_note": "Proceed with regular workflow."
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(
gemini_summarize_clinical_insights_async(query, qa_pairs)
)
raise RuntimeError("nest_asyncio not available")
return loop.run_until_complete(
gemini_summarize_clinical_insights_async(query, qa_pairs)
)
except Exception as exc:
logger.error(f"[GEMINI INTAKE] Insight summarization request failed: {exc}")
return {
"patient_profile": "",
"refined_problem_statement": query,
"key_findings": [
{"title": "Patient concern", "detail": query, "clinical_implication": "Requires standard evaluation"}
],
"handoff_note": "Proceed with regular workflow."
}
def gemini_supervisor_breakdown(
query: str,
use_rag: bool,
use_web_search: bool,
time_elapsed: float,
max_duration: int = MAX_DURATION,
previous_answer: str | None = None,
) -> dict:
"""Wrapper to obtain supervisor breakdown synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP SDK unavailable, using fallback breakdown")
return {
"sub_topics": [
{"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"},
{"id": 2, "topic": "Clinical Details", "instruction": "Provide key clinical insights", "expected_tokens": 200, "priority": "medium", "approach": "clinical perspective"},
],
"strategy": "Sequential answer with key points",
"exploration_note": "Fallback breakdown - basic coverage"
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
try:
return nest_asyncio.run(
gemini_supervisor_breakdown_async(
query,
use_rag,
use_web_search,
time_elapsed,
max_duration,
previous_answer,
)
)
except Exception as e:
logger.error(f"[GEMINI SUPERVISOR] Async breakdown failed: {e}")
raise
else:
logger.error("[GEMINI SUPERVISOR] Nested breakdown execution failed: nest_asyncio not available")
raise RuntimeError("nest_asyncio not available")
return loop.run_until_complete(
gemini_supervisor_breakdown_async(
query,
use_rag,
use_web_search,
time_elapsed,
max_duration,
previous_answer,
)
)
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Breakdown request failed: {type(exc).__name__}: {exc}")
logger.warning("[GEMINI SUPERVISOR] Falling back to default breakdown")
return {
"sub_topics": [
{"id": 1, "topic": "Core Question", "instruction": "Address the main medical question", "expected_tokens": 200, "priority": "high", "approach": "direct answer"},
],
"strategy": "Direct answer",
"exploration_note": "Fallback breakdown - single topic"
}
def gemini_supervisor_search_strategies(query: str, time_elapsed: float) -> dict:
"""Wrapper to obtain search strategies synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP unavailable for search strategies")
return {
"search_strategies": [
{"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(gemini_supervisor_search_strategies_async(query, time_elapsed))
else:
logger.error("[GEMINI SUPERVISOR] Nested search strategies execution failed: nest_asyncio not available")
return loop.run_until_complete(gemini_supervisor_search_strategies_async(query, time_elapsed))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Search strategies request failed: {exc}")
return {
"search_strategies": [
{"id": 1, "strategy": query, "target_sources": 2, "focus": "main query"}
],
"max_strategies": 1
}
def gemini_supervisor_rag_brainstorm(query: str, retrieved_docs: str, time_elapsed: float) -> dict:
"""Wrapper to obtain RAG brainstorm synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP unavailable for RAG brainstorm")
return {
"contexts": [
{"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(gemini_supervisor_rag_brainstorm_async(query, retrieved_docs, time_elapsed))
else:
logger.error("[GEMINI SUPERVISOR] Nested RAG brainstorm execution failed: nest_asyncio not available")
return loop.run_until_complete(gemini_supervisor_rag_brainstorm_async(query, retrieved_docs, time_elapsed))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] RAG brainstorm request failed: {exc}")
return {
"contexts": [
{"id": 1, "context": retrieved_docs[:500], "focus": "retrieved information", "relevance": "high"}
],
"max_contexts": 1
}
def _execute_medswin_core(
medical_model_obj,
medical_tokenizer,
task_instruction: str,
context: str,
system_prompt_base: str,
temperature: float,
max_new_tokens: int,
top_p: float,
top_k: int,
penalty: float
) -> str:
"""Core MedSwin execution logic (without GPU decorator for retry logic)"""
if context:
full_prompt = f"{system_prompt_base}\n\nContext:\n{context}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):"
else:
full_prompt = f"{system_prompt_base}\n\nTask: {task_instruction}\n\nAnswer concisely with key bullet points (Markdown format, no tables):"
messages = [{"role": "system", "content": full_prompt}]
if hasattr(medical_tokenizer, 'chat_template') and medical_tokenizer.chat_template is not None:
try:
prompt = medical_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as e:
logger.warning(f"[MEDSWIN] Chat template failed, using manual formatting: {e}")
prompt = format_prompt_manually(messages, medical_tokenizer)
else:
prompt = format_prompt_manually(messages, medical_tokenizer)
inputs = medical_tokenizer(prompt, return_tensors="pt").to(medical_model_obj.device)
eos_token_id = medical_tokenizer.eos_token_id or medical_tokenizer.pad_token_id
with torch.no_grad():
outputs = medical_model_obj.generate(
**inputs,
max_new_tokens=min(max_new_tokens, 800),
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=penalty,
do_sample=True,
eos_token_id=eos_token_id,
pad_token_id=medical_tokenizer.pad_token_id or eos_token_id
)
response = medical_tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
response = response.strip()
if "|" in response and "---" in response:
logger.warning("[MEDSWIN] Detected table format, converting to Markdown bullets")
lines = [line.strip() for line in response.split('\n') if line.strip() and not line.strip().startswith('|') and '---' not in line]
response = '\n'.join([f"- {line}" if not line.startswith('-') else line for line in lines])
logger.info(f"[MEDSWIN] Task completed: {len(response)} chars generated")
return response
# @spaces.GPU(max_duration=120)
def execute_medswin_task(
medical_model_obj,
medical_tokenizer,
task_instruction: str,
context: str,
system_prompt_base: str,
temperature: float,
max_new_tokens: int,
top_p: float,
top_k: int,
penalty: float
) -> str:
"""
MedSwin Specialist: Execute a single task assigned by Gemini Supervisor (with ZeroGPU tag)
Includes retry logic with exponential backoff to handle GPU task aborted errors
"""
import time
max_retries = 3
base_delay = 1.0 # Base delay in seconds
for attempt in range(max_retries):
try:
return _execute_medswin_core(
medical_model_obj, medical_tokenizer, task_instruction, context,
system_prompt_base, temperature, max_new_tokens, top_p, top_k, penalty
)
except Exception as e:
error_msg = str(e).lower()
is_gpu_error = 'gpu task aborted' in error_msg or 'gpu' in error_msg or 'zerogpu' in error_msg
if is_gpu_error and attempt < max_retries - 1:
delay = base_delay * (2 ** attempt) # Exponential backoff: 1s, 2s, 4s
logger.warning(f"[MEDSWIN] GPU task aborted (attempt {attempt + 1}/{max_retries}), retrying after {delay}s...")
time.sleep(delay)
continue
else:
logger.error(f"[MEDSWIN] Task failed after {attempt + 1} attempts: {e}")
raise
async def gemini_supervisor_synthesize_async(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str:
"""Gemini Supervisor: Synthesize final answer from all MedSwin responses"""
context_summary = ""
if rag_contexts:
context_summary += f"Document Context Available: {len(rag_contexts)} context(s) from uploaded documents.\n"
if search_contexts:
context_summary += f"Web Search Context Available: {len(search_contexts)} search result(s).\n"
all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)])
prompt = f"""You are a supervisor agent synthesizing a comprehensive medical answer from multiple specialist responses.
Original Query: "{query}"
Context Available:
{context_summary}
MedSwin Specialist Responses (from {len(medswin_answers)} sub-topics):
{all_answers_text}
Your task:
1. Synthesize all responses into a coherent, comprehensive final answer
2. Integrate information from all sub-topics seamlessly
3. Ensure the answer directly addresses the original query
4. Maintain clinical accuracy and clarity
5. Use clear structure with appropriate headings and bullet points
6. Remove redundancy and contradictions
7. Ensure all important points from MedSwin responses are included
Return the final synthesized answer in Markdown format. Do not add meta-commentary or explanations - just provide the final answer."""
system_prompt = "You are a medical answer synthesis supervisor. Create comprehensive, well-structured final answers from multiple specialist responses. Provide the answer directly without conversational prefixes like 'Here is...', 'This is...'. Start with the actual content immediately."
result = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
return result.strip()
async def gemini_supervisor_challenge_async(query: str, current_answer: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> dict:
"""Gemini Supervisor: Challenge and evaluate the current answer"""
context_info = ""
if rag_contexts:
context_info += f"Document contexts: {len(rag_contexts)} available.\n"
if search_contexts:
context_info += f"Search contexts: {len(search_contexts)} available.\n"
all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)])
prompt = f"""You are a supervisor agent evaluating and challenging a medical answer for quality and completeness.
Original Query: "{query}"
Available Context:
{context_info}
MedSwin Specialist Responses:
{all_answers_text}
Current Synthesized Answer:
{current_answer[:2000]}
Evaluate this answer and provide:
1. Completeness: Does it fully address the query? What's missing?
2. Accuracy: Are there any inaccuracies or contradictions?
3. Clarity: Is it well-structured and clear?
4. Context Usage: Are document/search contexts properly utilized?
5. Improvement Suggestions: Specific ways to enhance the answer
Return ONLY valid JSON:
{{
"is_optimal": true/false,
"completeness_score": 0-10,
"accuracy_score": 0-10,
"clarity_score": 0-10,
"missing_aspects": ["..."],
"inaccuracies": ["..."],
"improvement_suggestions": ["..."],
"needs_more_context": true/false,
"enhancement_instructions": "specific instructions for improving the answer"
}}"""
system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback in JSON format. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
evaluation = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Challenge evaluation: optimal={evaluation.get('is_optimal', False)}, scores={evaluation.get('completeness_score', 'N/A')}/{evaluation.get('accuracy_score', 'N/A')}/{evaluation.get('clarity_score', 'N/A')}")
return evaluation
else:
raise ValueError("Evaluation JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Challenge evaluation parsing failed: {exc}")
return {
"is_optimal": True,
"completeness_score": 7,
"accuracy_score": 7,
"clarity_score": 7,
"missing_aspects": [],
"inaccuracies": [],
"improvement_suggestions": [],
"needs_more_context": False,
"enhancement_instructions": ""
}
async def gemini_supervisor_enhance_answer_async(query: str, current_answer: str, enhancement_instructions: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> str:
"""Gemini Supervisor: Enhance the answer based on challenge feedback"""
context_info = ""
if rag_contexts:
context_info += f"Document contexts: {len(rag_contexts)} available.\n"
if search_contexts:
context_info += f"Search contexts: {len(search_contexts)} available.\n"
all_answers_text = "\n\n---\n\n".join([f"## {i+1}. {ans}" for i, ans in enumerate(medswin_answers)])
prompt = f"""You are a supervisor agent enhancing a medical answer based on evaluation feedback.
Original Query: "{query}"
Available Context:
{context_info}
MedSwin Specialist Responses:
{all_answers_text}
Current Answer (to enhance):
{current_answer}
Enhancement Instructions:
{enhancement_instructions}
Create an enhanced version of the answer that:
1. Addresses all improvement suggestions
2. Fills in missing aspects
3. Corrects any inaccuracies
4. Improves clarity and structure
5. Better utilizes available context
6. Maintains all valuable information from the current answer
Return the enhanced answer in Markdown format. Do not add meta-commentary."""
system_prompt = "You are a medical answer enhancement supervisor. Improve answers based on evaluation feedback while maintaining accuracy. Provide the enhanced answer directly without conversational prefixes like 'Here is...', 'This is...'. Start with the actual content immediately."
result = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
return result.strip()
async def gemini_supervisor_check_clarity_async(query: str, answer: str, use_web_search: bool) -> dict:
"""Gemini Supervisor: Check if answer is unclear or supervisor is unsure"""
if not use_web_search:
return {"is_unclear": False, "needs_search": False, "search_queries": []}
prompt = f"""You are a supervisor agent evaluating answer clarity and completeness.
Query: "{query}"
Current Answer:
{answer[:1500]}
Evaluate:
1. Is the answer unclear or incomplete?
2. Are there gaps that web search could fill?
3. Is the supervisor (you) unsure about certain aspects?
Return ONLY valid JSON:
{{
"is_unclear": true/false,
"needs_search": true/false,
"uncertainty_areas": ["..."],
"search_queries": ["specific search queries to fill gaps"],
"rationale": "brief explanation"
}}
Only suggest search if the answer is genuinely unclear or has significant gaps that search could address."""
system_prompt = "You are a clarity evaluator. Assess if additional web search is needed. Return ONLY valid JSON."
response = await call_agent(
user_prompt=prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL_LITE,
temperature=0.2
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
evaluation = json.loads(response[json_start:json_end])
logger.info(f"[GEMINI SUPERVISOR] Clarity check: unclear={evaluation.get('is_unclear', False)}, needs_search={evaluation.get('needs_search', False)}")
return evaluation
else:
raise ValueError("Clarity check JSON not found")
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Clarity check parsing failed: {exc}")
return {"is_unclear": False, "needs_search": False, "search_queries": []}
def gemini_supervisor_synthesize(query: str, medswin_answers: list, rag_contexts: list, search_contexts: list, breakdown: dict) -> str:
"""Wrapper to synthesize answer synchronously"""
if not MCP_AVAILABLE:
logger.warning("[GEMINI SUPERVISOR] MCP unavailable for synthesis, using simple concatenation")
return "\n\n".join(medswin_answers)
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(gemini_supervisor_synthesize_async(query, medswin_answers, rag_contexts, search_contexts, breakdown))
else:
logger.error("[GEMINI SUPERVISOR] Nested synthesis failed: nest_asyncio not available")
return loop.run_until_complete(gemini_supervisor_synthesize_async(query, medswin_answers, rag_contexts, search_contexts, breakdown))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Synthesis failed: {exc}")
return "\n\n".join(medswin_answers)
def gemini_supervisor_challenge(query: str, current_answer: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> dict:
"""Wrapper to challenge answer synchronously"""
if not MCP_AVAILABLE:
return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(gemini_supervisor_challenge_async(query, current_answer, medswin_answers, rag_contexts, search_contexts))
else:
logger.error("[GEMINI SUPERVISOR] Nested challenge failed: nest_asyncio not available")
return loop.run_until_complete(gemini_supervisor_challenge_async(query, current_answer, medswin_answers, rag_contexts, search_contexts))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Challenge failed: {exc}")
return {"is_optimal": True, "completeness_score": 7, "accuracy_score": 7, "clarity_score": 7, "missing_aspects": [], "inaccuracies": [], "improvement_suggestions": [], "needs_more_context": False, "enhancement_instructions": ""}
def gemini_supervisor_enhance_answer(query: str, current_answer: str, enhancement_instructions: str, medswin_answers: list, rag_contexts: list, search_contexts: list) -> str:
"""Wrapper to enhance answer synchronously"""
if not MCP_AVAILABLE:
return current_answer
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(gemini_supervisor_enhance_answer_async(query, current_answer, enhancement_instructions, medswin_answers, rag_contexts, search_contexts))
else:
logger.error("[GEMINI SUPERVISOR] Nested enhancement failed: nest_asyncio not available")
return loop.run_until_complete(gemini_supervisor_enhance_answer_async(query, current_answer, enhancement_instructions, medswin_answers, rag_contexts, search_contexts))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Enhancement failed: {exc}")
return current_answer
def gemini_supervisor_check_clarity(query: str, answer: str, use_web_search: bool) -> dict:
"""Wrapper to check clarity synchronously"""
if not MCP_AVAILABLE or not use_web_search:
return {"is_unclear": False, "needs_search": False, "search_queries": []}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(gemini_supervisor_check_clarity_async(query, answer, use_web_search))
else:
logger.error("[GEMINI SUPERVISOR] Nested clarity check failed: nest_asyncio not available")
return loop.run_until_complete(gemini_supervisor_check_clarity_async(query, answer, use_web_search))
except Exception as exc:
logger.error(f"[GEMINI SUPERVISOR] Clarity check failed: {exc}")
return {"is_unclear": False, "needs_search": False, "search_queries": []}
async def self_reflection_gemini(answer: str, query: str) -> dict:
"""Self-reflection using Gemini MCP"""
reflection_prompt = f"""Evaluate this medical answer for quality and completeness:
Query: "{query}"
Answer: "{answer[:1000]}"
Evaluate:
1. Completeness: Does it address all aspects of the query?
2. Accuracy: Is the medical information accurate?
3. Clarity: Is it clear and well-structured?
4. Sources: Are sources cited appropriately?
5. Missing Information: What important information might be missing?
Respond in JSON:
{{
"completeness_score": 0-10,
"accuracy_score": 0-10,
"clarity_score": 0-10,
"overall_score": 0-10,
"missing_aspects": ["..."],
"improvement_suggestions": ["..."]
}}"""
system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback."
response = await call_agent(
user_prompt=reflection_prompt,
system_prompt=system_prompt,
model=GEMINI_MODEL,
temperature=0.3
)
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
reflection = json.loads(response[json_start:json_end])
else:
reflection = {"overall_score": 7, "improvement_suggestions": []}
except:
reflection = {"overall_score": 7, "improvement_suggestions": []}
logger.info(f"Self-reflection score: {reflection.get('overall_score', 'N/A')}")
return reflection
def self_reflection(answer: str, query: str, reasoning: dict) -> dict:
"""Self-reflection: Evaluate answer quality and completeness"""
if not MCP_AVAILABLE:
logger.warning("Gemini MCP not available for reflection, using fallback")
return {"overall_score": 7, "improvement_suggestions": []}
try:
loop = asyncio.get_event_loop()
if loop.is_running():
if nest_asyncio:
return nest_asyncio.run(self_reflection_gemini(answer, query))
else:
logger.error("Error in nested async reflection: nest_asyncio not available")
else:
return loop.run_until_complete(self_reflection_gemini(answer, query))
except Exception as e:
logger.error(f"Gemini MCP reflection error: {e}")
return {"overall_score": 7, "improvement_suggestions": []}
|