File size: 14,651 Bytes
4e8b41a
 
 
ae75d6d
 
 
4e8b41a
 
ae75d6d
 
 
 
5fb4b63
ae75d6d
 
 
 
 
 
 
 
5fb4b63
ae75d6d
 
5fb4b63
 
 
 
 
 
ae75d6d
 
5fb4b63
ae75d6d
5fb4b63
ae75d6d
 
 
 
 
5fb4b63
 
 
 
 
 
 
ae75d6d
5fb4b63
 
 
 
ae75d6d
5fb4b63
 
 
 
 
 
 
 
 
ae75d6d
 
 
 
 
 
 
 
 
 
5fb4b63
ae75d6d
 
 
5fb4b63
 
 
ae75d6d
 
 
 
5fb4b63
 
 
 
 
 
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
5fb4b63
df9dc0d
ae75d6d
 
5fb4b63
ae75d6d
 
5fb4b63
 
 
 
 
ae75d6d
 
5fb4b63
ae75d6d
 
5fb4b63
 
 
 
df9dc0d
ae75d6d
5fb4b63
 
df9dc0d
5fb4b63
 
 
 
 
 
 
 
 
ae75d6d
5fb4b63
 
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df9dc0d
ae75d6d
 
5fb4b63
ae75d6d
 
df9dc0d
5fb4b63
 
df9dc0d
5fb4b63
 
 
 
df9dc0d
 
ae75d6d
 
5fb4b63
ae75d6d
df9dc0d
 
 
 
 
4e8b41a
df9dc0d
 
ae75d6d
 
 
 
 
 
 
 
 
 
5fb4b63
df9dc0d
5fb4b63
ae75d6d
 
 
5fb4b63
df9dc0d
ae75d6d
 
 
 
 
 
a941e0f
 
23ab4a7
ae75d6d
 
 
 
 
 
 
 
 
5fb4b63
 
 
 
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
5fb4b63
 
ae75d6d
 
5fb4b63
 
 
 
 
ae75d6d
 
 
 
 
 
 
 
 
5fb4b63
 
 
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a941e0f
ae75d6d
 
 
 
a941e0f
ae75d6d
 
 
 
 
 
 
174e181
ae75d6d
 
a941e0f
ae75d6d
 
 
 
174e181
ae75d6d
 
 
 
 
 
 
 
 
 
 
df9dc0d
ae75d6d
 
a941e0f
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df9dc0d
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb4b63
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb4b63
ae75d6d
 
 
 
5fb4b63
ae75d6d
 
 
 
 
c8a1001
ae75d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bed5f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import random

import gradio as gr
import numpy as np
from dotenv import load_dotenv
from gradio_client import Client
from PIL import Image

# Load environment variables
load_dotenv()

# Client configuration
HF_TOKEN = os.getenv("HF_TOKEN")

# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max


def create_prompt(params):
    """
    Generate a prompt string for sending to the client

    Args:
        params (dict): Dictionary of parameters used for prompt generation
            - label (str): Comma-separated button texts, will be split into array of 4 labels
            - detail (str): Design details
            - shape (str): Button shape
            - layout (str): Layout arrangement
            - background (str): Background setting

    Returns:
        str: Complete prompt string for image generation
    """
    label_str = params.get("label", "Button")
    detail = params.get("detail", "")
    shape = params.get("shape", "rounded")
    layout = params.get("layout", "horizontal_3")
    background = params.get("background", "natural")

    # Split labels by comma, take up to number of positions
    labels = [l.strip() for l in label_str.split(",") if l.strip()]
    if labels:
        # If there are labels, repeat to up to 4
        while len(labels) < 4:
            labels.extend(labels)

    layout_config = {
        "horizontal_3": {
            "positions": ["top", "middle", "bottom"],
            "desc": "3 horizontal rows: top, middle, bottom",
        },
        "vertical_2": {
            "positions": [
                "left middle-valign small text",
                "right middle-valign small text",
            ],
            "desc": "2 vertical tall buttons arranged side by side, vertical rectangular shape, 2 columns layout, horizontal text, small text orientation is horizontal",
        },
        "box_2x2": {
            "positions": ["left-top", "right-top", "left-bottom", "right-bottom"],
            "desc": "2x2 grid: left-top, right-top, left-bottom, right-bottom",
        },
    }
    shape_descriptions = {
        "box": "box shape",
        "rounded": "rounded corners",
        "oval": "oval shape",
        "free": "organic freeform shape",
    }

    config = layout_config.get(layout, layout_config["horizontal_3"])
    positions = config["positions"]
    layout_desc = config["desc"]
    shape_desc = shape_descriptions.get(shape, "rounded corners")

    base_prompt = (
        f"Create {len(positions)} {detail} button designs in a 1024x1024 image.\n"
    )
    base_prompt += f"Arranged in {layout_desc}.\n"
    base_prompt += f"{shape_desc.capitalize()}.\n"
    if detail:
        base_prompt += f"{detail.capitalize()} aesthetic: detailed visual elements and color palette.\n"
    # Describe each button with position and label
    for i, pos in enumerate(positions):
        if i < len(labels):
            base_prompt += f'{pos} button: "{labels[i]}".\n'
        else:
            base_prompt += f"{pos} button: empty text rectangle.\n"
    base_prompt += "Each button is a different design variation exploring the theme.\n"
    if background == "natural":
        base_prompt += "Natural background with subtle textures and ambient lighting.\n"
    elif background == "white":
        base_prompt += "plain white only background.\n"
    elif background == "black":
        base_prompt += "plain black only background.\n"
    else:
        base_prompt += "Clean background with proper lighting.\n"
    base_prompt += "Ultra HD, 4K, cinematic composition"
    return base_prompt


def call_client(
    prompt, seed, randomize_seed, aspect_ratio, num_inference_steps, hf_token=None
):
    """
    Call the gradio client for image generation

    Args:
        prompt (str): Prompt text for image generation
        seed (int): Random seed value
        randomize_seed (bool): Whether to randomize the seed
        aspect_ratio (str): Image aspect ratio (e.g., "1:1", "16:9", "4:3")
        num_inference_steps (int): Number of inference steps (4-28)

    Returns:
        tuple: (image, seed, error) - Image object, used seed, error message
    """
    try:
        # Map aspect_ratio to resolution
        resolution_map = {
            "1:1": "1024x1024 ( 1:1 )",
            "16:9": "1280x720 ( 16:9 )",
            "9:16": "720x1280 ( 9:16 )",
        }
        resolution = resolution_map.get(aspect_ratio, "1024x1024 ( 1:1 )")

        client = Client("Tongyi-MAI/Z-Image-Turbo", hf_token=hf_token)
        result = client.predict(
            prompt=prompt,
            resolution=resolution,
            seed=seed,
            steps=num_inference_steps,
            shift=3.0,
            random_seed=randomize_seed,
            gallery_images=[],
            api_name="/generate",
        )
        # Assume result is PIL Image
        return result, seed, None
    except Exception as e:
        return None, seed, str(e)


# --- Main Inference Logic ---
# Define outside Blocks or define within Blocks to pass to Examples
def run_inference_engine(
    label,
    detail,
    shape,
    layout,
    background,
    seed,
    randomize_seed,
    aspect_ratio,
    guidance_scale,
    num_inference_steps,
    request: gr.Request,
):
    """
    generate UI button images

    Args:
        label (str): Text to display on the button,allow empty
        detail (str): Detailed design prompt
        shape (str): Button shape ("box", "rounded", "oval", "free")
        layout (str): Layout arrangement ("horizontal_3:3x1", "vertical_2:1x2", "box_2x2:2x2")
        background (str): Background setting ("natural", "white", "black")
        seed (int): Random seed value
        randomize_seed (bool): Whether to randomize the seed
        aspect_ratio (str): Image aspect ratio (use 1:1)
        guidance_scale (float): Guidance scale (use 1),no need to change
        num_inference_steps (int): Number of inference steps (use 8),no need to change

    Yields:
        tuple: (image, seed, status_message) - Generated image, used seed, status message
    """
    hf_token = HF_TOKEN
    if request:
        if hasattr(request, "headers"):
            if hasattr(request.headers, "authorization"):
                hf_token = request.headers.authorization
                hf_token = hf_token.replace("Bearer", "").strip()
        # print(hf_token)

    yield None, seed, "Generating..."
    prompt_params = {
        "label": label,
        "detail": detail,
        "shape": shape,
        "layout": layout,
        "background": background,
    }
    prompt = create_prompt(prompt_params)

    # Debug: Print the generated prompt
    # print(f"Generated prompt: {prompt}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    image, generated_seed, error = call_client(
        prompt, seed, randomize_seed, aspect_ratio, num_inference_steps, hf_token
    )

    if image is None:
        gr.Warning(f"Error: {error}")
        yield None, generated_seed, f"Error: {error}"
    else:
        # Convert image to WebP format
        original_image = image[0][0]["image"]
        yield (original_image, generated_seed, "")


# --- UI Customization ---
css = """
body { font-family: 'Helvetica Neue', Arial, sans-serif; }
#col-container { max-width: 1200px; margin: 0 auto; padding: 20px; }
h1 { text-align: center; font-weight: 800; color: #333; margin-bottom: 0.5em; }
.subtitle { text-align: center; color: #666; margin-bottom: 2em; }

.generate-btn {
    background: linear-gradient(90deg, #6366f1 0%, #a855f7 100%) !important;
    border: none !important;
    color: white !important;
    font-weight: bold !important;
    font-size: 1.2em !important;
    padding: 20px !important;
    border-radius: 12px !important;
    transition: all 0.3s ease;
    height: 100% !important;
    min-height: 100px;
}
.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(99, 102, 241, 0.4);
}

.examples-container table {
    font-size: 0.85em !important;
    margin-bottom: 0 !important;
}
.examples-container td {
    padding: 4px 8px !important;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
    max-width: 150px;
}
.examples-container label {
    font-weight: bold;
    color: #555;
    margin-bottom: 5px;
    display: block;
}

#result-gallery {
    border-radius: 12px;
    box-shadow: 0 10px 30px rgba(0,0,0,0.1);
    border: 1px solid #eee;
}
.input-group {
    background: #f9fafb;
    padding: 15px;
    border-radius: 10px;
    border: 1px solid #e5e7eb;
    margin-bottom: 15px;
}
"""

theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="slate", radius_size="md")

# Examples data
example_data = [
    [
        "Start,Option,Exit",
        "Neon glowing cyberpunk, blue/purple gradient",
        "box",
        "horizontal_3",
        "black",
        "examples/start.webp",
    ],
    [
        "Buy",
        "Luxury gold texture, minimal elegant, serif",
        "rounded",
        "vertical_2",
        "white",
        "examples/buy.webp",
    ],
    [
        "RPG,R,P,G",
        "Wood texture, steel rim, fantasy game style",
        "free",
        "box_2x2",
        "natural",
        "examples/rpg.webp",
    ],
    [
        "Submit",
        "Modern flat design, blue gradient, clean minimal style",
        "rounded",
        "horizontal_3",
        "white",
        None,
    ],
]

with gr.Blocks(css=css, theme=theme, title="UI Button Generator MCP") as demo:
    gr.Markdown("# ๐ŸŽจ AI UI Button Generator")
    gr.Markdown(
        "<div class='subtitle'><p>UI button material and design concept generation tool using Z-Image-Turbo(<a href='https://huggingface.co/docs/hub/spaces-zerogpu'>Zero-GPU</a>)</p><p>Web and MCP without Header-Authorization,only few time you can try zero-gpu</p></div>"
    )

    with gr.Column(elem_id="col-container"):
        # --- 1. Definition Phase (render=False) ---
        # Create components referenced by Examples first.
        # With render=False, they are not yet displayed on screen.

        # Input section
        label = gr.Textbox(
            label="Button Text",
            placeholder="Start, OK...",
            value="Start",
            info="Text inside the button",
            render=False,
        )
        detail = gr.Textbox(
            label="Detail Prompt",
            placeholder="Design details...",
            value="Pirate theme, wood texture, gold aesthetic",
            lines=4,
            info="Design details",
            render=False,
        )
        shape = gr.Dropdown(
            label="Shape",
            choices=["box", "rounded", "oval", "free"],
            value="rounded",
            info="Shape",
            render=False,
        )
        layout = gr.Radio(
            label="Layout",
            choices=["horizontal_3", "vertical_2", "box_2x2"],
            value="horizontal_3",
            info="Layout arrangement",
            render=False,
        )
        background = gr.Dropdown(
            label="Background",
            choices=["natural", "white", "black"],
            value="natural",
            info="Background",
            render=False,
        )

        # Advanced Settings section
        seed = gr.Slider(
            label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, render=False
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True, render=False)
        aspect_ratio = gr.Radio(
            label="Aspect Ratio",
            choices=["1:1", "16:9", "9:16"],
            value="1:1",
            render=False,
        )
        guidance_scale = gr.Slider(
            label="Guidance Scale", minimum=1.0, maximum=5.0, value=1.0, render=False
        )
        num_inference_steps = gr.Slider(
            label="Steps", minimum=4, maximum=28, value=8, render=False
        )

        # Output section
        result = gr.Image(
            label="Output Image",
            show_label=False,
            type="pil",
            elem_id="result-image",
            height=600,
            render=False,
        )
        status_msg = gr.Markdown(render=False)

        # --- 2. Layout Construction Phase (.render()) ---

        with gr.Row(equal_height=False):
            # Left column
            with gr.Column(scale=1, min_width=400):
                with gr.Group(elem_classes="input-group"):
                    gr.Markdown("### ๐Ÿ“ Basic Settings")
                    label.render()
                    detail.render()

                with gr.Group(elem_classes="input-group"):
                    gr.Markdown("### ๐ŸŽจ Style & Layout")
                    with gr.Row():
                        shape.render()
                        background.render()
                    layout.render()
                run_button = gr.Button(
                    "โœจ Generate\nButtons",
                    variant="primary",
                    elem_classes="generate-btn",
                    scale=1,
                )

                with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
                    seed.render()
                    randomize_seed.render()
                    aspect_ratio.render()
                    with gr.Row():
                        guidance_scale.render()
                        num_inference_steps.render()

            # Right column
            with gr.Column(scale=1):
                gr.Markdown("### ๐Ÿ–ผ๏ธ Generated Button")
                result.render()
                status_msg.render()
                # Row for button and Examples
                # gr.Markdown("**Quick Presets (Click to try)**")
                # Initialize here with fn, inputs, outputs
                gr.Examples(
                    examples=example_data,
                    fn=run_inference_engine,
                    inputs=[label, detail, shape, layout, background, result],
                    outputs=[result, seed, status_msg],
                    examples_per_page=3,
                    run_on_click=False,
                    cache_examples=False,
                )

    # --- 3. Event Binding ---
    # Examples already has fn, so only define the main button click event

    run_button.click(
        fn=run_inference_engine,
        inputs=[
            label,
            detail,
            shape,
            layout,
            background,
            seed,
            randomize_seed,
            aspect_ratio,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed, status_msg],
    )

if __name__ == "__main__":
    demo.launch(show_error=True, mcp_server=True, share=True)