File size: 30,213 Bytes
ec4aa90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 |
"""
Production-grade pattern matching system with AI-powered file type detection.
Replaces the simple primary/secondary classification with intelligent pattern detection.
"""
import os
import logging
from typing import Dict, List, Optional, Tuple
from pathlib import Path
import json
from dataclasses import dataclass
from enum import Enum
from src.config import AIManager, GeminiSchemas
logger = logging.getLogger(__name__)
class PatternSeverity(Enum):
"""Severity levels for detected patterns."""
CRITICAL = "critical" # Security issues, breaking changes
HIGH = "high" # Deprecated APIs, performance issues
MEDIUM = "medium" # Code quality, maintainability
LOW = "low" # Style, minor improvements
INFO = "info" # Informational only
@dataclass
class DetectedPattern:
"""Represents a detected legacy pattern."""
pattern_type: str
severity: PatternSeverity
file_path: str
language: str
description: str
line_numbers: List[int]
confidence: float # 0.0 to 1.0
recommendation: str
estimated_effort_hours: float
@dataclass
class FileAnalysis:
"""Complete analysis of a single file."""
file_path: str
language: str
framework: Optional[str]
patterns: List[DetectedPattern]
overall_priority: PatternSeverity
modernization_score: float # 0-100, higher = more modern
requires_modernization: bool
class IntelligentPatternMatcher:
"""
Production-grade pattern matcher using AI for intelligent detection.
Features:
- Language-agnostic pattern detection
- Context-aware analysis
- Confidence scoring
- Batch processing optimization
- Caching for performance
"""
# Language detection patterns
LANGUAGE_PATTERNS = {
# Python
'.py': 'Python',
'.pyw': 'Python',
'.pyx': 'Python (Cython)',
# Java
'.java': 'Java',
# JavaScript/TypeScript
'.js': 'JavaScript',
'.jsx': 'JavaScript (React)',
'.mjs': 'JavaScript (ES Module)',
'.cjs': 'JavaScript (CommonJS)',
'.ts': 'TypeScript',
'.tsx': 'TypeScript (React)',
# PHP
'.php': 'PHP',
'.php3': 'PHP',
'.php4': 'PHP',
'.php5': 'PHP',
'.phtml': 'PHP',
# Ruby
'.rb': 'Ruby',
'.rbw': 'Ruby',
# Go
'.go': 'Go',
# C/C++
'.c': 'C',
'.h': 'C/C++ Header',
'.cpp': 'C++',
'.cc': 'C++',
'.cxx': 'C++',
'.c++': 'C++',
'.hpp': 'C++ Header',
'.hh': 'C++ Header',
'.hxx': 'C++ Header',
'.h++': 'C++ Header',
# C#
'.cs': 'C#',
# Rust
'.rs': 'Rust',
# Kotlin
'.kt': 'Kotlin',
'.kts': 'Kotlin Script',
# Swift
'.swift': 'Swift',
# Scala
'.scala': 'Scala',
'.sc': 'Scala Script',
# R
'.r': 'R',
'.R': 'R',
# Perl
'.pl': 'Perl',
'.pm': 'Perl Module',
'.t': 'Perl Test',
'.pod': 'Perl Documentation',
# Shell
'.sh': 'Shell',
'.bash': 'Bash',
'.zsh': 'Zsh',
'.fish': 'Fish Shell'
}
# Common legacy patterns by language
LEGACY_PATTERNS = {
'Python': [
'Python 2 syntax (print statements, old-style classes)',
'Deprecated libraries (MySQLdb, urllib2, optparse)',
'Missing type hints',
'Hardcoded credentials',
'SQL injection vulnerabilities',
'Insecure cryptography (MD5, SHA1 for passwords)',
'Global variables and mutable defaults',
'Missing error handling',
'Synchronous I/O in async contexts'
],
'Java': [
'Pre-Java 8 code (no lambdas, streams)',
'Deprecated APIs (Vector, Hashtable, Date)',
'Missing generics',
'Raw JDBC without ORM',
'Synchronization issues',
'Resource leaks (missing try-with-resources)',
'Hardcoded configuration',
'Missing null checks'
],
'JavaScript': [
'var instead of let/const',
'Callback hell (no Promises/async-await)',
'jQuery for DOM manipulation',
'eval() usage',
'Missing strict mode',
'Prototype-based inheritance',
'Global namespace pollution',
'XSS vulnerabilities'
],
'TypeScript': [
'any type overuse',
'Missing strict mode',
'Old module syntax',
'Missing null checks',
'Implicit any',
'Type assertions instead of guards'
],
'PHP': [
'mysql_* functions (deprecated)',
'No prepared statements',
'register_globals usage',
'eval() and create_function()',
'Missing input validation',
'Outdated PHP version syntax',
'No namespace usage',
'Missing error handling'
],
'Ruby': [
'Ruby 1.8/1.9 syntax',
'Missing bundler',
'Deprecated gem versions',
'Missing RSpec/Minitest',
'Global variables',
'Missing error handling',
'Synchronous I/O'
],
'Go': [
'Missing error handling',
'Deprecated packages',
'No context usage',
'Missing defer for cleanup',
'Goroutine leaks',
'Race conditions'
],
'C++': [
'Raw pointers instead of smart pointers',
'Manual memory management',
'Missing RAII',
'C-style casts',
'Missing const correctness',
'No move semantics',
'Deprecated C++98/03 features'
],
'C#': [
'Missing async/await patterns',
'Old collection types',
'Missing LINQ usage',
'Deprecated .NET Framework APIs',
'Missing nullable reference types',
'Old string concatenation',
'Missing using statements'
],
'Rust': [
'Deprecated Rust 2015/2018 syntax',
'Missing error handling with Result',
'Unsafe code blocks',
'Missing lifetime annotations',
'Deprecated crate versions',
'Missing async/await'
],
'Kotlin': [
'Java-style code in Kotlin',
'Missing null safety',
'Not using coroutines',
'Missing data classes',
'Old collection APIs',
'Missing extension functions'
],
'Swift': [
'Objective-C style code',
'Missing optionals',
'Old closure syntax',
'Missing guard statements',
'Deprecated Swift 4 features',
'Missing Codable protocol'
],
'Scala': [
'Scala 2.x syntax',
'Missing for-comprehensions',
'Old collection APIs',
'Missing implicit conversions',
'Deprecated Future usage',
'Missing case classes'
],
'R': [
'Old R syntax',
'Missing tidyverse usage',
'Deprecated package versions',
'Missing pipe operators',
'Old data.frame usage',
'Missing ggplot2'
],
'Perl': [
'Perl 4 syntax',
'Missing strict and warnings',
'Old module system',
'Deprecated CPAN modules',
'Missing Moose/Moo',
'Old regex syntax'
],
'Shell': [
'Missing error handling (set -e)',
'Unquoted variables',
'Missing shellcheck compliance',
'Deprecated commands',
'Missing function usage',
'Security vulnerabilities'
]
}
def __init__(self, cache_dir: Optional[str] = None):
"""
Initialize pattern matcher.
Args:
cache_dir: Optional directory for caching analysis results
"""
# Use centralized AI manager
self.ai_manager = AIManager()
self.cache_dir = Path(cache_dir) if cache_dir else None
if self.cache_dir:
self.cache_dir.mkdir(exist_ok=True, parents=True)
logger.info(
f"IntelligentPatternMatcher initialized with provider: {self.ai_manager.provider_name}, "
f"model: {self.ai_manager.model_name}"
)
def detect_language(self, file_path: str, code_sample: str) -> Tuple[str, Optional[str]]:
"""
Detect programming language and framework using AI.
Args:
file_path: Path to the file
code_sample: Sample of code (first 500 chars)
Returns:
Tuple of (language, framework)
"""
# First try extension-based detection
ext = Path(file_path).suffix.lower()
base_language = self.LANGUAGE_PATTERNS.get(ext, 'Unknown')
# Use AI for framework detection
prompt = f"""Analyze this code and identify:
1. Programming language (confirm or correct: {base_language})
2. Framework/library being used (if any)
FILE: {file_path}
CODE SAMPLE:
```
{code_sample[:500]}
```
Respond in JSON format:
{{
"language": "detected language",
"framework": "framework name or null",
"confidence": 0.0-1.0
}}
"""
try:
# Use JSON schema for guaranteed structure
schema = GeminiSchemas.language_detection()
response_text = self.ai_manager.generate_content(
prompt=prompt,
temperature=AIManager.TEMPERATURE_PRECISE,
max_tokens=AIManager.MAX_OUTPUT_TOKENS_SMALL,
response_format="json",
response_schema=schema if self.ai_manager.provider_type == "gemini" else None
)
result = json.loads(response_text)
language = result.get('language', base_language)
framework = result.get('framework')
logger.info(f"Language detection: {language}, Framework: {framework}, Confidence: {result.get('confidence', 0)}")
return language, framework
except Exception as e:
logger.warning(f"AI language detection failed: {e}, using extension-based")
return base_language, None
def analyze_file(self, file_path: str, code: str) -> FileAnalysis:
"""
Perform comprehensive pattern analysis on a single file.
Args:
file_path: Path to the file
code: File contents
Returns:
FileAnalysis object with detected patterns
"""
logger.info(f"Analyzing patterns in {file_path}")
# Check cache
if self.cache_dir:
cache_file = self.cache_dir / f"{hash(file_path + code)}.json"
if cache_file.exists():
try:
cached = json.loads(cache_file.read_text())
return self._deserialize_analysis(cached)
except Exception as e:
logger.warning(f"Cache read failed: {e}")
# Detect language and framework
language, framework = self.detect_language(file_path, code[:500])
# Get relevant patterns for this language
relevant_patterns = self.LEGACY_PATTERNS.get(language, [])
# Build analysis prompt - limit code size to prevent output token overflow
# For large files, we need to be more conservative to leave room for detailed analysis
code_limit = 4000 if len(code) > 6000 else 6000
prompt = f"""You are a senior code auditor. Analyze this code for legacy patterns and modernization opportunities.
FILE: {file_path}
LANGUAGE: {language}
FRAMEWORK: {framework or 'None detected'}
PATTERNS TO CHECK:
{json.dumps(relevant_patterns, indent=2)}
CODE:
```{language.lower()}
{code[:code_limit]}
```
IMPORTANT: Focus on the MOST CRITICAL patterns. Limit your response to the top 10 most important issues.
For each detected pattern, provide:
1. Pattern type (from the list above or new if discovered)
2. Severity (critical/high/medium/low/info)
3. Line numbers where pattern appears (first occurrence only)
4. Confidence score (0.0-1.0)
5. Brief description (max 100 chars)
6. Concise recommendation (max 100 chars)
7. Estimated effort in hours
Also provide:
- Overall modernization score (0-100, where 100 is fully modern)
- Whether modernization is required (true/false)
- Overall priority (critical/high/medium/low/info)
Respond in JSON format:
{{
"patterns": [
{{
"pattern_type": "string",
"severity": "critical|high|medium|low|info",
"line_numbers": [1],
"confidence": 0.95,
"description": "brief description",
"recommendation": "concise fix",
"estimated_effort_hours": 2.5
}}
],
"modernization_score": 65,
"requires_modernization": true,
"overall_priority": "high"
}}
"""
try:
# Use JSON schema for guaranteed structure - no more parsing failures!
# Use LARGE token limit for detailed pattern analysis
schema = GeminiSchemas.pattern_analysis()
response_text = self.ai_manager.generate_content(
prompt=prompt,
temperature=AIManager.TEMPERATURE_PRECISE,
max_tokens=AIManager.MAX_OUTPUT_TOKENS_LARGE,
response_format="json",
response_schema=schema if self.ai_manager.provider_type == "gemini" else None
)
if not response_text:
logger.error(f"Empty response from AI for {file_path}")
raise ValueError(f"Empty response from AI API for {file_path}")
# With JSON schema, response is guaranteed to be valid JSON
result = json.loads(response_text)
logger.info(f"Pattern analysis successful for {file_path}: {len(result.get('patterns', []))} patterns found")
# Convert to DetectedPattern objects
patterns = []
for p in result.get('patterns', []):
patterns.append(DetectedPattern(
pattern_type=p['pattern_type'],
severity=PatternSeverity(p['severity']),
file_path=file_path,
language=language,
description=p['description'],
line_numbers=p.get('line_numbers', []),
confidence=p.get('confidence', 0.8),
recommendation=p['recommendation'],
estimated_effort_hours=p.get('estimated_effort_hours', 1.0)
))
analysis = FileAnalysis(
file_path=file_path,
language=language,
framework=framework,
patterns=patterns,
overall_priority=PatternSeverity(result.get('overall_priority', 'medium')),
modernization_score=result.get('modernization_score', 50),
requires_modernization=result.get('requires_modernization', True)
)
# Cache the result
if self.cache_dir:
try:
cache_file = self.cache_dir / f"{hash(file_path + code)}.json"
cache_file.write_text(json.dumps(self._serialize_analysis(analysis), indent=2))
except Exception as e:
logger.warning(f"Cache write failed: {e}")
logger.info(f"Found {len(patterns)} patterns in {file_path}")
return analysis
except Exception as e:
logger.error(f"Pattern analysis failed for {file_path}: {e}")
# Return minimal analysis on error
return FileAnalysis(
file_path=file_path,
language=language,
framework=framework,
patterns=[],
overall_priority=PatternSeverity.INFO,
modernization_score=100,
requires_modernization=False
)
def analyze_batch(self, files: Dict[str, str], batch_size: int = 3) -> Dict[str, FileAnalysis]:
"""
Analyze multiple files efficiently by batching API calls.
Args:
files: Dictionary mapping file paths to contents
batch_size: Number of files to analyze per API call (default: 3)
Returns:
Dictionary mapping file paths to FileAnalysis objects
"""
logger.info(f"Batch analyzing {len(files)} files with batch_size={batch_size}")
results = {}
file_items = list(files.items())
# Process in batches to reduce API calls
for i in range(0, len(file_items), batch_size):
batch = file_items[i:i + batch_size]
if len(batch) == 1:
# Single file - use individual analysis
file_path, code = batch[0]
try:
analysis = self.analyze_file(file_path, code)
results[file_path] = analysis
except Exception as e:
logger.error(f"Failed to analyze {file_path}: {e}")
else:
# Multiple files - use batch analysis
try:
batch_results = self._analyze_batch_api(batch)
results.update(batch_results)
except Exception as e:
logger.error(f"Batch analysis failed: {e}, falling back to individual")
# Fallback to individual analysis
for file_path, code in batch:
try:
analysis = self.analyze_file(file_path, code)
results[file_path] = analysis
except Exception as e2:
logger.error(f"Failed to analyze {file_path}: {e2}")
logger.info(f"Batch analysis complete: {len(results)} files analyzed")
return results
def _analyze_batch_api(self, batch: List[Tuple[str, str]]) -> Dict[str, FileAnalysis]:
"""
Analyze multiple files in a single API call.
Args:
batch: List of (file_path, code) tuples
Returns:
Dictionary mapping file paths to FileAnalysis objects
"""
logger.info(f"Analyzing {len(batch)} files in single API call")
# Build combined prompt for all files
# Reduce code sample size for batch processing to prevent token overflow
files_info = []
for file_path, code in batch:
ext = Path(file_path).suffix.lower()
language = self.LANGUAGE_PATTERNS.get(ext, 'Unknown')
# Use smaller samples for batch to leave room for multiple file analyses
code_sample_size = 2000 if len(batch) > 2 else 3000
files_info.append({
'file_path': file_path,
'language': language,
'code_sample': code[:code_sample_size]
})
prompt = f"""Analyze these {len(batch)} code files for legacy patterns and modernization opportunities.
For EACH file, provide a complete analysis with patterns, scores, and priorities.
IMPORTANT: Limit to top 5 most critical patterns per file to keep response concise.
FILES TO ANALYZE:
{json.dumps(files_info, indent=2)}
For each file, detect:
- Deprecated libraries and APIs
- Security vulnerabilities (SQL injection, XSS, hardcoded credentials)
- Code quality issues (missing type hints, error handling)
- Performance problems
Keep descriptions and recommendations brief (max 80 chars each).
Respond in JSON format with this structure:
{{
"files": [
{{
"file_path": "file1.py",
"language": "Python",
"framework": "Flask or null",
"patterns": [
{{
"pattern_type": "SQL injection vulnerability",
"severity": "critical",
"line_numbers": [10, 11],
"confidence": 0.95,
"description": "Direct string concatenation in SQL query",
"recommendation": "Use parameterized queries",
"estimated_effort_hours": 2.0
}}
],
"modernization_score": 35,
"requires_modernization": true,
"overall_priority": "critical"
}}
]
}}
"""
try:
# Use JSON schema for guaranteed structure
schema = GeminiSchemas.batch_pattern_analysis()
response_text = self.ai_manager.generate_content(
prompt=prompt,
temperature=AIManager.TEMPERATURE_PRECISE,
max_tokens=AIManager.MAX_OUTPUT_TOKENS_LARGE,
response_format="json",
response_schema=schema if self.ai_manager.provider_type == "gemini" else None
)
# With JSON schema, response is guaranteed to be valid JSON
result = json.loads(response_text)
logger.info(f"Batch analysis successful: received data for {len(result.get('files', []))} files")
# Schema guarantees 'files' key exists
files_data = result.get('files', [])
# Convert to FileAnalysis objects
analyses = {}
for file_data in files_data:
file_path = file_data['file_path']
language = file_data.get('language', 'Unknown')
framework = file_data.get('framework')
patterns = []
for p in file_data.get('patterns', []):
patterns.append(DetectedPattern(
pattern_type=p['pattern_type'],
severity=PatternSeverity(p['severity']),
file_path=file_path,
language=language,
description=p['description'],
line_numbers=p.get('line_numbers', []),
confidence=p.get('confidence', 0.8),
recommendation=p['recommendation'],
estimated_effort_hours=p.get('estimated_effort_hours', 1.0)
))
analysis = FileAnalysis(
file_path=file_path,
language=language,
framework=framework,
patterns=patterns,
overall_priority=PatternSeverity(file_data.get('overall_priority', 'medium')),
modernization_score=file_data.get('modernization_score', 50),
requires_modernization=file_data.get('requires_modernization', True)
)
analyses[file_path] = analysis
logger.info(f"Batch API call successful: analyzed {len(analyses)} files")
return analyses
except Exception as e:
logger.error(f"Batch API call failed: {e}")
raise
def prioritize_files(self, analyses: Dict[str, FileAnalysis]) -> List[Tuple[str, FileAnalysis]]:
"""
Prioritize files for modernization based on analysis.
Args:
analyses: Dictionary of file analyses
Returns:
Sorted list of (file_path, analysis) tuples, highest priority first
"""
# Define priority weights
severity_weights = {
PatternSeverity.CRITICAL: 100,
PatternSeverity.HIGH: 75,
PatternSeverity.MEDIUM: 50,
PatternSeverity.LOW: 25,
PatternSeverity.INFO: 10
}
def calculate_priority_score(analysis: FileAnalysis) -> float:
"""Calculate priority score for an analysis."""
# Base score from overall priority
base_score = severity_weights.get(analysis.overall_priority, 50)
# Add points for each pattern weighted by severity and confidence
pattern_score = sum(
severity_weights.get(p.severity, 25) * p.confidence
for p in analysis.patterns
)
# Factor in modernization score (lower = higher priority)
modernization_penalty = (100 - analysis.modernization_score) / 10
return base_score + pattern_score + modernization_penalty
# Sort by priority score
prioritized = sorted(
analyses.items(),
key=lambda x: calculate_priority_score(x[1]),
reverse=True
)
return prioritized
def generate_report(self, analyses: Dict[str, FileAnalysis]) -> str:
"""
Generate human-readable report from analyses.
Args:
analyses: Dictionary of file analyses
Returns:
Formatted report string
"""
report = []
report.append("=" * 80)
report.append("INTELLIGENT PATTERN MATCHING REPORT")
report.append("=" * 80)
report.append("")
# Summary statistics
total_files = len(analyses)
files_needing_modernization = sum(1 for a in analyses.values() if a.requires_modernization)
total_patterns = sum(len(a.patterns) for a in analyses.values())
avg_modernization_score = sum(a.modernization_score for a in analyses.values()) / max(total_files, 1)
report.append("SUMMARY:")
report.append(f" Total Files Analyzed: {total_files}")
report.append(f" Files Requiring Modernization: {files_needing_modernization}")
report.append(f" Total Patterns Detected: {total_patterns}")
report.append(f" Average Modernization Score: {avg_modernization_score:.1f}/100")
report.append("")
# Language breakdown
language_counts = {}
for analysis in analyses.values():
language_counts[analysis.language] = language_counts.get(analysis.language, 0) + 1
report.append("LANGUAGES:")
for lang, count in sorted(language_counts.items(), key=lambda x: x[1], reverse=True):
report.append(f" {lang}: {count} files")
report.append("")
# Severity breakdown
severity_counts = {s: 0 for s in PatternSeverity}
for analysis in analyses.values():
for pattern in analysis.patterns:
severity_counts[pattern.severity] += 1
report.append("PATTERNS BY SEVERITY:")
for severity in [PatternSeverity.CRITICAL, PatternSeverity.HIGH,
PatternSeverity.MEDIUM, PatternSeverity.LOW, PatternSeverity.INFO]:
count = severity_counts[severity]
if count > 0:
report.append(f" {severity.value.upper()}: {count}")
report.append("")
# Top priority files
prioritized = self.prioritize_files(analyses)[:10]
report.append("TOP 10 PRIORITY FILES:")
for i, (file_path, analysis) in enumerate(prioritized, 1):
report.append(f" {i}. {file_path}")
report.append(f" Priority: {analysis.overall_priority.value}")
report.append(f" Modernization Score: {analysis.modernization_score}/100")
report.append(f" Patterns: {len(analysis.patterns)}")
report.append("")
report.append("=" * 80)
return "\n".join(report)
def _serialize_analysis(self, analysis: FileAnalysis) -> dict:
"""Serialize FileAnalysis to dict for caching."""
return {
'file_path': analysis.file_path,
'language': analysis.language,
'framework': analysis.framework,
'patterns': [
{
'pattern_type': p.pattern_type,
'severity': p.severity.value,
'file_path': p.file_path,
'language': p.language,
'description': p.description,
'line_numbers': p.line_numbers,
'confidence': p.confidence,
'recommendation': p.recommendation,
'estimated_effort_hours': p.estimated_effort_hours
}
for p in analysis.patterns
],
'overall_priority': analysis.overall_priority.value,
'modernization_score': analysis.modernization_score,
'requires_modernization': analysis.requires_modernization
}
def _deserialize_analysis(self, data: dict) -> FileAnalysis:
"""Deserialize dict to FileAnalysis."""
patterns = [
DetectedPattern(
pattern_type=p['pattern_type'],
severity=PatternSeverity(p['severity']),
file_path=p['file_path'],
language=p['language'],
description=p['description'],
line_numbers=p['line_numbers'],
confidence=p['confidence'],
recommendation=p['recommendation'],
estimated_effort_hours=p['estimated_effort_hours']
)
for p in data['patterns']
]
return FileAnalysis(
file_path=data['file_path'],
language=data['language'],
framework=data['framework'],
patterns=patterns,
overall_priority=PatternSeverity(data['overall_priority']),
modernization_score=data['modernization_score'],
requires_modernization=data['requires_modernization']
)
|