muhammadhamza-stack
correct example images path
31126d3
from typing import Tuple
from ultralytics import YOLO
from ultralytics.engine.results import Boxes
from ultralytics.utils.plotting import Annotator
import gradio as gr
import os
# --- Model Loading ---
try:
cell_detector = YOLO("./weights/yolo_uninfected_cells.pt")
yolo_detector = YOLO("./weights/yolo_infected_cells.pt")
redetr_detector = YOLO("./weights/redetr_infected_cells.pt")
except Exception as e:
print(f"Warning: Model loading failed. Ensure weights files are in ./weights/ directory. Error: {e}")
# Define placeholder models if real models fail to load (for UI development)
class DummyYOLO:
def predict(self, image, conf=0.5):
# Return dummy results structure
class DummyBoxes:
xyxy = []
class DummyResult:
boxes = DummyBoxes()
return [DummyResult()]
cell_detector = DummyYOLO()
yolo_detector = DummyYOLO()
redetr_detector = DummyYOLO()
models = {"Yolo V11": yolo_detector, "Real Time Detection Transformer": redetr_detector}
# --- Documentation Strings ---
USAGE_GUIDELINES = """
## 1. Quick Start Guide: Cell Detection and Counting
This application uses two specialized Artificial Intelligence models to analyze a blood smear image, simultaneously detecting both healthy and potentially infected (unhealthy) cells.
1. **Upload**: Upload a clear blood smear image (JPG or PNG) using the 'Input Image' box.
2. **Select Model**: Choose between the two detection models: `Yolo V11` (often fast and accurate for common objects) or `Real Time Detection Transformer`.
3. **Adjust Confidence**: Use the slider to set the **Confidence Threshold**. (A higher value means the model must be more certain of a detection.)
4. **Run**: Click the **"Submit"** button.
5. **Review**: The output image will show bounding boxes around detected cells (colors based on model configuration), and the counts will be displayed below.
### Key Requirement:
* The system uses **two independent models**: one strictly for **Healthy Cells**, and one (the selected model) for **Infected Cells**.
"""
INPUT_EXPLANATION = """
## 2. Expected Inputs
| Parameter | Purpose | Range/Options | Guidance for Non-Tech Users |
| :--- | :--- | :--- | :--- |
| **Input Image** | The microscopic blood smear image to be analyzed. | JPG, PNG format. | Ensure the image is clear and focused. |
| **Model Selection** | Chooses the AI architecture used for detecting **Infected Cells**. | Yolo V11, Real Time Detection Transformer | Start with the default (`Yolo V11`) unless specific performance is required. |
| **Confidence Threshold** | The minimum probability required for a detection box to be shown. | 0.01 to 1.00 | Setting this too low (e.g., 0.1) may show many false positives. Setting it too high (e.g., 0.9) may miss real cells. Start around 0.5. |
"""
OUTPUT_EXPLANATION = """
## 3. Expected Outputs
| Output Field | Description | Interpretation |
| :--- | :--- | :--- |
| **Output Image** | The input image with colored bounding boxes drawn around every detected cell. | Visually confirms the location and classification of each cell. |
| **Healthy Cells Count** | The total number of cells detected by the dedicated *uninfected* cell model. | Provides a baseline count of normal cells. |
| **Infected Cells Count** | The total number of cells detected by the *selected* model (Yolo V11 or RT DETR). | This represents the count of potentially cancerous/abnormal cells. |
"""
# --- Example Data Setup ---
SAMPLE_EXAMPLES = [
["./blood_smear_1.jpg", "Yolo V11", 0.5],
["./blood_smear_2.jpg", "Real Time Detection Transformer", 0.45],
]
# ----------------- Core Inference Function -----------------
def inference(image, model, conf) -> Tuple[str, str, str]:
if image is None:
gr.Error("Please upload an image.")
return None, "0", "0"
if model not in models:
gr.Error(f"Selected model '{model}' is not available.")
return None, "0", "0"
bboxes = []
labels = []
# Use lists to store counts that will be incremented
healthy_cell_count_list = [0]
unhealthy_cell_count_list = [0]
# 1. Healthy Cell Detection (Fixed model and fixed confidence 0.4)
cells_results = cell_detector.predict(image, conf=0.4)
for cell_result in cells_results:
boxes: Boxes = cell_result.boxes
healthy_cells_bboxes = boxes.xyxy.tolist()
healthy_cell_count_list[0] += len(healthy_cells_bboxes)
bboxes.extend(healthy_cells_bboxes)
# Note: YOLO classes start at 0. Here we use custom labels 'healthy'
labels.extend(["healthy"] * len(healthy_cells_bboxes))
# 2. Infected Cell Detection (Selected model and user-defined confidence)
selected_model_results = models[model].predict(image, conf=conf)
for res in selected_model_results:
boxes: Boxes = res.boxes
unhealthy_cells_bboxes = boxes.xyxy.tolist()
unhealthy_cell_count_list[0] += len(unhealthy_cells_bboxes)
bboxes.extend(unhealthy_cells_bboxes)
# Note: Use 'unhealthy' label for the selected model's output
labels.extend(["unhealthy"] * len(unhealthy_cells_bboxes))
# 3. Annotation
annotator = Annotator(image, font_size=30, line_width=4, pil=True) # Increased font/width for visibility
# Define colors based on label
color_map = {"healthy": (0, 255, 0), "unhealthy": (255, 0, 0)} # Green for healthy, Red for unhealthy
for box, label in zip(bboxes, labels):
# Annotator expects a list of 4 float coords and an optional label string
annotator.box_label(box, label, color=color_map.get(label, (255, 255, 255)))
img = annotator.result()
# Return results as strings for the Textbox components
return (img, str(healthy_cell_count_list[0]), str(unhealthy_cell_count_list[0]))
# ----------------- Gradio Interface (Blocks) -----------------
with gr.Blocks(title="Blood Cell Detection") as ifer:
gr.Markdown("<h1 style='text-align: center;'> Blood Cell Cancer Detection and Counting </h1>")
gr.Markdown("Uses specialized object detection models to count healthy and infected cells in blood smear images.")
# 1. Documentation
with gr.Accordion(" Tips & Guidelines ", open=False):
gr.Markdown(USAGE_GUIDELINES)
gr.Markdown("---")
gr.Markdown(INPUT_EXPLANATION)
gr.Markdown("---")
gr.Markdown(OUTPUT_EXPLANATION)
# 2. Interface Inputs
with gr.Row():
with gr.Column():
gr.Markdown("## Step 1: Upload Image ")
image_input = gr.Image(label="Input Image", type="pil")
with gr.Column():
gr.Markdown("## Step 2: Set Parameters")
model_selection = gr.Dropdown(
label="Select Detection Model (for Infected Cells)",
choices=["Yolo V11", "Real Time Detection Transformer"],
multiselect=False,
value="Yolo V11"
)
conf_slider = gr.Slider(
minimum=0.01,
maximum=1,
value=0.5,
step=0.01,
label="Confidence Threshold (Min. certainty required)"
)
gr.Markdown("## Step 3: Click Analyze Image")
with gr.Row():
submit_button = gr.Button("Analyze Image", variant="primary")
# 3. Interface Outputs
gr.Markdown("## Results")
output_image = gr.Image(label="Output Image (Detected Cells)", type="numpy")
with gr.Row():
healthy_count = gr.Textbox(label="Healthy Cells Count")
unhealthy_count = gr.Textbox(label="Infected Cells Count")
# 4. Examples
gr.Markdown("---")
gr.Markdown("## Example Inputs")
gr.Examples(
examples=SAMPLE_EXAMPLES,
inputs=[image_input, model_selection, conf_slider],
outputs=[output_image, healthy_count, unhealthy_count],
fn=inference,
cache_examples=False,
label="Click a row to load the image and parameters"
)
# Event Handler
submit_button.click(
fn=inference,
inputs=[image_input, model_selection, conf_slider],
outputs=[output_image, healthy_count, unhealthy_count]
)
if __name__ == "__main__":
ifer.launch(share=True)